ADA & CLARA: WHO’D HAVE THOUGHT IT?

A SOCIAL HISTORY THROUGH ARCHAEOLOGY

BY JESSICA BERRY

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Maritime Archaeology

FLINDERS UNIVERSITY
DEPARTMENT OF ARCHAEOLOGY
2008
TABLE OF CONTENTS

List of Figures .. 3
List of Tables .. 4
Declaration of Candidate .. 5
Acknowledgments .. 6
Abstract ... 7
Introduction ... 8
Chapter One: *Ada & Clara* and its owners ... 14
 An historical overview of South Australia’s inland waterways trade: its rise and fall 14
 Other vessels .. 17
 Ada & Clara ... 19
 Family ties .. 20
 The Dunk brothers and their captain .. 23
 The Dunk sons .. 24
 Laurence Richard Pavy and John Woodrow ... 26
 George Henry Griffin and Albert Heinrich Jantke .. 27
 Albert Heinrich Jantke, Albert Murray Dennis and Donald Murray Dennis ... 28
 Conclusion ... 32
Chapter Two: A Neo-Marxist Approach .. 39
 A Theoretical Framework .. 39
 Questions .. 40
 Neo-Marxism ... 41
 The Dialectic, The Ship and *Ada & Clara* ... 46
 Ships Have Biographies ... 48
 Conclusion ... 49
Chapter Three: Methodology ... 51
 Previous fieldwork .. 51
 GIS .. 52
 Results of prior fieldwork .. 52
 Limitations of results ... 56
 Environment ... 56
 Methodology for current fieldwork .. 57
 Off site work .. 58
 On-site work ... 59
 Limitations of study .. 59
 Conclusion ... 60
Chapter Four: Results of Fieldwork .. 61
Results of off-site work ... 61
Benches ... 61
Propellers ... 63
Fender, lifejackets and life ring ... 65
Balustrades .. 67

Results of on-site work: Ada & Clara .. 68
Keel assembly and stringers ... 68
Stringers ... 69
Frames ... 71
Planking ... 74
Iron plates ... 74
Fastenings ... 75
Deadwood ... 76
Stempost component .. 76
Timber .. 77
Conclusion ... 78

Chapter Five: Interpretation .. 79
On-site interpretation ... 79
Minimum Resources ... 81
Timber ... 82
Research questions ... 83
Off-site material culture ... 83
Use of a neo-Marxism paradigm .. 84
Recommendations for future research .. 88
Conclusion ... 88

Chapter Six: Conclusion .. 89
References ... 91
Primary Sources ... 91
Secondary sources .. 92
Appendix 1 ... 99
Appendix 2 ... 101
Appendix 3 ... 102

List of Figures
Figure 1. Map showing River Murray and lakes 1965-68 (HS 830.83). Photograph courtesy of State Library of South Australia. ... 16
Figure 2. Picture of original vessel before any major alterations. SLSA: PRG 1258/1/6 Ada & Clara on slip, 1909. Courtesy of the State Library of South Australia. .. 20
Figure 3. *Ada & Clara* with Captain Griffin on foredeck. Photograph shows complete overhaul from original vessel. SLSA: PRG 1258/1/10. Photograph courtesy of the State Library of South Australia. ..28

Figure 4. Photograph showing interior of *Ada & Clara* seating on lower deck. Sleeping quarters below. SLSA: B49599. Courtesy of the State Library of South Australia. ...30

Figure 5. Original site plan inserted into Site Recorder® ...53

Figure 6. Site plan after being traced ..54

Figure 7. Site plan with total station points added ..55

Figure 8. X marks the spot. Map showing geographical location of *Ada & Clara*. Map incorporates data copyright of the Commonwealth of Australia (*Geoscience Australia*) 2007. ...58

Figure 9. Site conditions. (J. Berry 2007) ...60

Figure 10. Performing a visual inspection of the bench timber. (J. Berry 2007)62

Figure 11. One of *Ada & Clara’s* top deck benches. (J. Berry 2007) ...62

Figure 12. Scaled drawings of bench (C. Dappert 2007). ...63

Figure 13. First propeller showing key dimensions. (J. Berry 2007) ...64

Figure 14. Second propeller showing key dimensions. (J. Berry 2007) ...64

Figure 15. Hemp fender (J. Berry 2007) ..65

Figure 16. Life ring as it was found in a shed under a table (J. Berry 2007) ..66

Figure 17. Scaled photograph of life ring. (J. Berry 2007) ...66

Figure 18. Kapok-stuffed lifejackets (J. Berry 2007) ..67

Figure 19. *Ada & Clara* balustrade from top deck. (J. Berry 2007) ..68

Figure 20. Iron bolts through starboard stringer. Image extracted from site plan69

Figure 21. Site plan of *Ada & Clara* by J. Berry, C. Dappert, N. Ortmann, R. Bullers, K. Keeping, P. Ross, J. McKinnon, J. Kimura ..70

Figure 22. A profile view of section between SF18 to SF24 showing frame arrangement and iron plate (C. Dappert 2007) ..72

Figure 23. Frames PF18 and PF19 (J. Berry 2007) ...72

Figure 24. Excavation unit showing example of frame assembly. Image extracted from site plan73

Figure 25. Galvanised iron plate. (J. Berry 2007) ...75

Figure 26. Section of planking showing bolts with square nuts. Image extracted from site plan75

Figure 27. Likely deadwood at stern. Image extracted from site plan ..76

Figure 28. Suspected stempost. (K. Winslow 2007) ..77

List of Tables

Table 1 The different stages of construction and alteration of *Ada & Clara* (NAA A7509/3-5; GRG 51/236 and GRG 51/237). ...33

Table 2. Timber and space in millimetres. Starboard side showing frame angles99

Table 3. Timber and space in millimetres. Port side showing frame angles101
Declaration of Candidate

I certify that the work presented in this document, to the best of my knowledge, has neither been previously published or written by another person except from those where due reference has been made within the text nor has been submitted for a degree or diploma at this or any other university.

Jessica Berry

June 2008
Flinders University
Adelaide, South Australia
Acknowledgments

I wish to thank the following people, in no particular order, whose help was invaluable.

Jennifer McKinnon, Lecturer, Department of Archaeology, Flinders University; Nathan Richards, Associate Professor, Program in Maritime Studies, East Carolina University; Dr Lynley Wallis, Department of Archaeology, Flinders University; Sarah Ward of the Nautical Archaeological Society, Mrs Laurel Dennis, Delan and Kallan Dennis.

Enormous gratitude also to Kingsley Haskett for his shipbuilding expertise.

Also to all the staff at Adelaide State library and both the National and State Archives, who showed the utmost support, kindness and patience, and had great ideas.

Thanks also to all those Flinders University staff and students who kindly volunteered their time and wisdom: Kenny Keeping, Jason Raupp, Claire Dappert, Jun Kimura, Nicole Ortmann, Peter Ross and Rick Bullers.
Abstract

The object of this thesis is to provide important information about the social aspects of shipbuilding techniques in the River Murray and lakes area by employing a neo-Marxist theoretical framework on one representative vessel, Ada & Clara. The vessel had a lifespan of over 60 years. Political and social events during this period included some part of the Industrial Revolution, two major international economic depressions and two world wars. Ada & Clara also had 10 owners and operators.

It began as a three-masted schooner in 1891 working as a cargo carrier on the shallow lakes near the Murray Mouth. After the 1930s Great Depression, a different owner converted it into a passenger/tourist vessel for the River Murray. The vessel now lies abandoned on the mudflats of Hindmarsh Island in South Australia.

A combination of archaeological, historical and oral evidence is interpreted employing a neo-Marxist paradigm. The framework provides a valuable insight into the mindsets and motivations of different owners and operators of the vessel. In this way it represents a useful way of interpreting abandoned wreck sites that incorporates the vital social aspects of archaeology.
Introduction

Social archaeology is the study of how people influenced and left their mark on the material world. It is through social archaeology that we can attempt to understand the people that came before us and what drove them to act in the way they did (Hocker 1991:1; Steffy 1994:194) (see also Ransley 2005:626). Richard Steffy furthermore emphasised the importance of applying social archaeology to maritime culture: “People…They left their marks everywhere, as they do on all ships if only one can find them…Never omit this category. It is the most interesting, most challenging, and sometimes the most fruitful part of the work” (Steffy 1994:194). These social aspects highlighted here are the focus of this historical and archaeological study of Ada & Clara. This thesis considers the archaeological and historical evidence through a neo-Marxist lens, which gives an excellent opportunity to achieve a greater understanding of the many owners and operators of the vessel whose career spanned over 60 years. By employing this method it is possible also to help better understand ourselves and our motives. I argue then that Ada & Clara’s history is inextricably linked to the people associated with it and its economic background: it is the social manifestation of a dialetical idealism.

The purpose of this study is to provide important information about the social aspects of shipbuilding techniques in the River Murray and lakes area by employing a neo-Marxist theoretical framework on one representative vessel. Furthermore, it is intended that through the use of this theoretical paradigm this study will provide a greater insight into the mindsets of the owners and operators who lived and worked in this riverine environment. It
is hoped this thesis will make an important contribution to work already conducted on wrecked and abandoned vessels in the River Murray in South Australia, whilst introducing a new approach to future interpretations. By focusing on the construction and alteration details of Ada & Clara through such a theoretical framework this investigation represents a new way of examining wrecks of Australia’s riverine systems and provides a baseline for future thematic studies.

The study of South Australia’s wrecked and abandoned vessels in inland waterways and tidal regions has so far been limited to types and styles of construction (see Kenderdine 1993, 1995). Wider studies also include: Parsons (1992), MacLeod (1992), Kenderdine (1992a, 1992b, Loney (1993), Coroneos (1997). This thesis provides a different approach to the study of riverine craft as it concentrates on Ada & Clara specifically. It is not, however, a historical particularist study. Rather, it has adopted a neo-Marxist paradigm to studying the vessel in its context. This post-processual framework permits an analysis of the vessel’s economic and historic background whilst at the same time allowing for a focus on ideology and subjectivity. The importance of recognising these two concepts, when interpreting the remains, will be discussed. From the above, then, the reason for the title of this thesis: “Ada & Clara: who’d have thought it?” perhaps becomes clear. The English expression suits this work. The “who” represents any person making an interpretation of the vessel at any period in time; “thought” represents the cognitive aspect of the neo-Marxist post-processual approach; the “it” represents the material culture.
The history of *Ada & Clara*, once a three-masted schooner, is a rich one. The vessel’s working life spanned over 60 years. Political and social events during this time included not only part of the Industrial Revolution, but also two world wars and two economic depressions. The vessel began as a cargo carrier working on Lake Alexandrina and Lake Albert. In later years it was converted, slowly by different owners, into a passenger and tourist motor boat plying the River Murray. The vessel now lies abandoned on Hindmarsh Island near the mouth of the River Murray. It was left there in 1968 because the owners could no longer afford to keep it running. It was originally abandoned a little further upriver. Locals, however, were displeased by the sight of a rotting wooden vessel at a time when new speed boats were increasingly being used by tourists (Kallan Dennis 2007, pers.comm.). Thus *Ada & Clara’s* owner was forced to move the vessel out of sight. This is at first glance an ignominious end to an illustrious working life. However, the vessel was not abandoned before its owner had removed anything that he believed was of commercial value.

The archaeological remains have since stayed relatively untouched for the last 40 years. During the summer months (November-May) they are revealed at low tide and consist of the basic hull, frames and keelson. Frames are both iron and wood. The assemblage appears haphazard and indicates that the vessel underwent many different alterations.

Other than a brief Field School conducted by Flinders University staff and students in February 2007, no in-depth archaeological study of the vessel and its history had since been conducted. This thesis fills that important gap. There is much local interest in the vessel, and several local historians have
mentioned it in their works (Esterhuizen 1993; Faull 1993; Rees 1993; Baker and Reschke 1997). At a few stages in its career it even developed mythological status in the eyes of the local population. Events, such as the time it allegedly turned around independently to rescue its captain who had fallen overboard, were noted in contemporary local newspapers (*The Advertiser* 21/2/1959).

Historical research consisted of a review of original documents in State and National Archives in South Australia. The aim of researching the primary sources was to uncover as much information as possible, not only of local perspectives of the particular vessel, but also of any construction and alteration details. Fortunately some relatives of the last owner are alive and were able to provide primary historical and photographic evidence, some of which even contradicted official sources.

Several research strategies were developed appropriate to the site’s intertidal and mainly terrestrial situation on the mudflats of Hindmarsh Island. During the Field School it was first mapped using a Total Station, the results of which were entered into a GIS programme. This survey combined with hand-drawn studies of areas of the site of particular interest provided a better understanding of the vessel’s construction periods. Some localised excavation was also carried out. This work was later modified and expanded for the purposes of this thesis.

A combination of fieldwork and historical analysis were thus used to place the vessel within a neo-Marxist paradigm and answer questions such as: What can the archaeological, historical and ethnographic information reveal
about the mentality of the locals involved with *Ada & Clara* and their perception of it? Can the vessel’s construction and adjustments be matched to various owners and operators? How can this vessel be incorporated into a cultural heritage landscape?

This thesis contains six chapters outlining the research and analysis conducted on *Ada & Clara*. CHAPTER ONE is a historical study. Making full use of archival material, contemporary newspapers and local knowledge from historians and family members, it places the vessel in its context, outlining the economic and social history of the different owners and operators of the vessel and alterations on the vessel itself.

CHAPTER TWO examines a theoretical model for interpreting the site, adopting a post-processual neo-Marxist approach. It outlines how neo-Marxism developed from traditional Marxism before discussing the definition of material culture and dialectical idealism.

CHAPTER THREE describes previous fieldwork at the site, including the limitations of the previous work. It then discusses the methodological approach for this current study which includes both on-site work and a study of the remains of *Ada & Clara* found off-site, which included two propellers and some of the vessel’s deck furniture.

CHAPTER FOUR presents the excavation and survey results, both on-site and off-site. It includes a site plan and scaled drawings of certain important sections of the vessel. It also includes details of the excavation.
CHAPTER FIVE draws together the theoretical, archaeological and historical investigations of this study and discusses a potential future for *Ada & Clara* in the field of cultural heritage management. It also draws together the various research strands and assesses the possibilities for future research. Finally, CHAPTER SIX presents the conclusions.
Chapter One: *Ada & Clara* and its owners

To understand a boat’s design, materials, and construction, you must first understand the people and society that produced it; for this reason you should be prepared to spend a substantial portion of your time interviewing informants and examining the collections of libraries, museums and archives (Crisman 1993:313).

This chapter will focus on the history of *Ada & Clara*. In order to put the vessel in its context, it will first give an overview of the history of South Australia’s inland waterways. This will be followed by a brief summary of other notable similar vessels operating during the same period in these areas. These two sections provide an important backdrop. The chapter will then focus on *Ada & Clara* in particular, and will trace the lives of its different owners and operators, and the various construction and alterations that were made by these people in order to adapt the vessel for different types of work. It will conclude by considering the economic factors that caused its last owners to abandon it.

An historical overview of South Australia’s inland waterways trade: its rise and fall

The establishment of regular shipping on South Australia’s inland waterways can be traced back to two main events: the discovery of gold in neighbouring Victoria in the early 1850s and the introduction of steam-powered vessels (Bach 1976:95,136; Parsons 1986:51; Kenderdine 1995:18,; Coroneos and McKinnon 1997:10). Prior to that the first English settlers and entrepreneurs had envisioned opening the River Murray to trade, principally wool and wheat, but it was the discovery of gold in Victoria that provided
the catalyst for opening the River Murray to transportation. So in 1849 Sir Henry Fox Young, the then governor of South Australia, chose Port Elliot as the Southern Ocean’s trading post to reach the most remote areas of the fledgling colony, as far as 1,000 kilometres inland. This was seen as the next-best alternative to a too costly rail link between Lake Alexandrina and the coast of the Southern Ocean (Parsons 1992:5).

Concurrent with the discovery of gold was the invention of steam technology. Not long after Port Elliot was established, two of Australia’s early explorers, Francis Cadell and William Randell, made pioneering explorations into the River Murray (Parsons 1992:4; Griffiths and Jeffery 1994; Coroneos 1997:15). In August 1853, Cadell’s Lady Augusta navigated the treacherous Murray Mouth to Goolwa and both Lady Augusta and Mary Ann reached Swan Hill in Victoria. Thus began almost 100 years of booming trade along the Murray (see Figure 1 below). By 1857 there were already 15 steamers trading on the river (Mudie 1976:60; Coroneos 1997:15-16) carrying cargo of wool, wheat and flour. Within three years the value of cargo had increased from a mere £25,000 to £247,000 (Coroneos 1997:16). By the turn of the century small settlements along the Murray had grown into towns serviced by the constant trade of steamers (Bach 1976:136; Coroneos 1997:19-20). Murray Bridge was one such settlement. After 1884, when it was linked to Adelaide by railway, it became a significant river port. Grain, fruit, fish and wool, came from up river and “in return, all the general goods and hardware to get a farming community on its feet went from Murray Bridge by steamer” (South Australia State Archives (SLSA), Public Records Group (PRG) 309) (see also Painter 1979:95).
Figure 1. Map showing River Murray and lakes 1965-68 (HS 830.83). Photograph courtesy of State Library of South Australia.

At the base of the Murray at Lake Alexandrina and Lake Albert, schooners were servicing the lakeside ports, carrying cargo to Milang and Goolwa for transportation either up river, or to Port Adelaide or on to Melbourne.
Schooners were able to compete easily with the steamers on the lakes as they had fewer fuel costs, shallower drafts and smaller distances to cover. Lake Alexandrina is 360 square kilometres with a maximum depth of 4 metres and Lake Albert is 106 square kilometres with a maximum depth of about 1.5 metres (Baker and Reschke 1977:4, 1984:7). Before the 1940s and the construction of a system of weirs, locks and barrages along the Murray and the mouth, lake levels fluctuated, and during droughts navigation was a serious problem (Faull 1993:7). Appearances were deceptive too. Winds and high swells on the lakes caused many vessel accidents, sometimes only causing embarrassment to vessel masters, but tragically, sometimes claiming lives. An experienced lake hand warned of the dangers of being top heavy whilst crossing the lakes (Parliamentary Standing Committee on Public Works on Barrages Near Murray Mouth, November 23, 1933).

Meanwhile lakeside settlements were growing quickly due to the burgeoning river trade and the pioneering work of a handful of men. First among them was Thomas Richard Bowman, a “founding father of a pastoral dynasty” with the help of his five sons (Faull 1993:31). In the 1870s he bought lakeside properties at Campbell Park for about £70,000 and at Poltalloch. “Poltalloch was shearing 33,000 sheep and up to 800 bales of wool that had to be shipped to Milang each season” (Baker and Reschke 1977:10).

Other vessels
At this time the expansion of trade of wool and other cargo in South Australia was highly dependent on schooners and steamers to deliver goods to Goolwa from where they could be shipped on to Port Adelaide. Before
focusing on the historical and economic details of Ada & Clara it is first useful to place the vessel in its context, looking briefly at what other vessels were operating during the same period in the same area. Below is a brief summary of some of those notable vessels and their operators.

White Cloud: One of the earliest schooners, it was built between 1868-69 along the Coorong (Rees 1993:104; Parsons 1987:127). In order to afford materials to build it, George Ross had to work as a labourer. On return he found the hull of the vessel was some distance from the water so he constructed a cofferdam on the shores of Lake Alexandrina which he spent two weeks filling with a bucket (Rees 1993:104). Little is known of its fate after 1877, the last official reference.

Punkeri: Another schooner, built in 1872 by Carl Ferdinand Kruse, later owner of Ada & Clara. Punkeri, like Ada & Clara, was known to transport wool from ports along the lakes. It sank in 1890. It was subsequently raised and broken up (Parsons 1987:104; Kingsley Haskett 2007, pers. comm.). Few records exist for this vessel.

Trix: A ketch built in 1898 in Birkenhead, South Australia by A. McFarlane, with an auxiliary engine fitted in 1932. It was originally described as a ‘powder boat’ (Parsons 1983:68). It followed a similar path to Ada & Clara. It was converted in 1943 into a showboat and moved from the lakes to plying the River Murray carrying passengers on pleasure cruises. In 1944 it was licensed to carry 100 passengers (Painter 1998:218). In 1965 its name was changed to Riverina.
These three vessels provide a historical backdrop for a study of *Ada & Clara*. All three performed similar tasks and one even mirrored the history of *Ada & Clara*. However few records remain. This demonstrates that *Ada & Clara* is particularly significant, due not only to the existence of a wide range of historical documents but also to the presence of archaeological remains.

Ada & Clara

It was into this historical setting that the three-masted schooner *Ada & Clara* (Official Number 89432) was built. The vessel was needed to join William Peter Dunk’s fleet of trading vessels, steamers *Jupiter, Milang, Murray* and barge *Annie*, to carry “everything from flour to bricks between Milang and Meningie” (Baker and Reschke 1977:10; Griffiths and Jeffery 1994). Meningie is a town on the shores of Lake Albert that began as a cattle and sheep station of the South Australian Company in 1843. Other stations were Warringie and Malcom Point. Stud cattle and sheep were shipped here and also to Narrung, Campbell Park and Narwellawar, from Milang (Baker and Reschke 1977:12). *Ada & Clara* also carried salt from Mulgundawa to Milang where it was loaded on to a train to Adelaide.

Although William Dunk owned the vessel, it was financed by Thomas Bowman (Rees 1993:89) and presumably named after his two daughters Ada May (1873-1944) and Clare Bray (1876-1952) (*Biographical index of South Australians*) (Phyllis Potts 2007, pers.comm.). Official records state the schooner was built at Milang in 1891 by Carl Heinrich Ferdinand Kruse (Government Record Group (GRG) 51/237, 51/236, 51/239/0/1; Register of British Ships (RBS) A7509/3-5) and was put into operation on August 5, the following year (see Figure 2).
The history of *Ada & Clara* is intimately linked with the people who built the businesses that financed it, the people who skippered it (often the very same), prospered by it, lived in it and eventually abandoned it in 1968. The families were close and often related. In this way the history of the vessel began even before its construction, with *Punkeri*, another three-masted schooner (Parsons 1990:103,106). *Punkeri* was skippered by Captain Kruse, who listed himself as both a “Gentleman” and a “Mariner” in the registration certificates (RBS A7509), and an “engineer” in the *South Australian Directory* (SAD). He sailed weekly down the Coorong from Salt Creek to Naracoorte. To Salt Creek he would carry chaff for the horses that hauled coaches between Mount Gambier and Meningie (PRG 309). He was known
for his daring voyages. In 1870, for example, during a flood, he sailed *Punkeri* from Milang across the lake, out by Blind Creek, over 10 kilometres south of Wellington, and across Cooke’s plains to load a cargo of wool. He then returned to Goolwa where the cargo was transferred to Victor Harbor and exported to the UK (Rees 1993:89; *Murray Valley Standard* 1971). Sometimes the lake levels were so low that Kruse was forced to “pole the schooner across the lake… digging the hog pole in the mud and walking back along the length of the ship” (PRG 309). *Punkeri* sank in 1890 whilst carrying fencing wire for Thomas Bowman. The cargo shifted, destabilising the boat and causing it to capsize (Rees 1993:89; Parsons 1990:103). This calamity forced Bowman to finance the construction of *Ada & Clara* in 1891.

Kruse’s name first appears in historical records in a land survey of Milang in the 1860s. By 1868 he owned a large warehouse, capable of holding 4,000 bales of wool (Mobbs and Faull, 1993:51). Brothers W.P “Grandpa” and William Henry Dunk were also early settlers. Little is known of his brother, William Henry. W.P. Dunk was born in Kent, England in 1838, and came to Australia as a boy. He took a leading role in developing the town, particularly the shipping business, when he was not donating equipment to the local school (Rees 1993:111). He did this in partnership with another successful and well-connected businessman and later Member of Parliament, A.H. Landseer, born in London in 1829 (Biographical Index of South Australians; Rees 1993:108; Parsons 1990:29). Landseer arrived from Victoria in 1858, having first made some money as a gold-digger (*Register* 1906). From the turn of the century, few copies of the *Southern Argus* newspaper were complete without an advertisement from either one of their
companies). Albert Pavy, who built Milang’s first mill in 1857, also had links to Ada & Clara (Baker and Reschke 1977:18).

The South Australian Register wrote in August 1857:

Milang is fast becoming a very bustling little port and will shortly grow into a place of importance. Already it has two inns, a steam mill, a store of some extent, a chapel in the course of erection, a timber yard and a jetty…there are now about 110 souls in the township and several hundred settlers living within a radius of two to three miles (South Australian Register 21/8/1857).

Shortly after, Dunk and Landseer began a shipping agency “that grew to grain-buying, ship-building and mail-carrying … From here the sailing schooners sustained the pioneering efforts of the lakeside settlers…Ada & Clara, Annie and Punkeri made a breed of inland salt water sailormen” (Baker and Resche 1977:18). Indeed “there was hardly an organisation in Milang in which W.P. Dunk did not take a leading part” (Rees 1993:83). Landseer too was instrumental in encouraging progress. Once, addressing a Milang community dinner, he said that trade was dependent on farming and that it was “always a mark of progress to see flocks driven away by the plough” (Mobbs and Faull 1993:51). As an agent for Captain Cadell’s River Murray Navigation company, Landseer fought hard to develop the shipping trade. In 1873 Landseer and Dunk launched a floating dock on Lake Alexandrina at Milang at the cost of £1,500. The Southern Argus reported at the time that it was the “biggest floating dock in the Southern Hemisphere”, at 144 feet long, 40 feet wide and 9 ft deep with a load capacity of 1,000 tons (Rees 1993:85; Griffiths and Jeffery 1994:9). It was subsequently towed to Mannum as the Milang shore was too shallow. By 1884 a branch
railway had been built between Sandergrove and Milang (Rees 1993:85; Griffiths and Jeffery 1994:11).

The Dunk brothers and their captain

Ada & Clara’s career continued without mention in historical records until 1911 when Kruse died and the two Dunk brothers became owners, (National Australian Archives (NAA) D596 1941/522; A7509/3-5), listing themselves as “merchants”. During this period there is one reference to *Ada & Clara* in the Register of Australian and New Zealand Shipping when it was classed as A1, the best possible classification (Register of Australian and New Zealand Shipping 1918). The survey was conducted in 1915. This is the first and only known time the vessel was given such a classification.

During their ownership, the Dunk brothers converted the vessel to a two-master and installed a Max Marine Motor from Alloa, Scotland. This is also confirmed by Phyllis Potts, born 1913, who went on frequent day trips on *Ada & Clara* (Phyllis Potts 2007, pers. comm.). According to a Certificate of Survey, Captain Alexander Fergusen (his name has various spellings in official records) a Norwegian, skippered the vessel during their tenureship (D596 1941/522). His regular job was to take salt from Mulgundawa jetty to Milang where it was loaded on to a train to Adelaide (Rees 1993:89).

Fergusen, known as “The Viking” for his feats aboard, was interviewed by *The Advertiser* in 1959. He recalled an incident that is still remembered locally (Kallan Dennis, 2007, pers.comm.).

Once I was knocked off the *Ada & Clara* into Lake Albert. The shallow water of the lake was about 8 inches above my head. The only other crew member was an
aborigine (sic). He launched the dinghy and came back for me while the schooner sailed off on its own. Then the schooner gybed (sic), swung around and came back sailing on its own accord and we scrambled aboard again (*The Advertiser* 21/2/1959).

Fergusen failed to mention another incident, where he was forced to remove his trousers to keep *Ada & Clara* afloat:

The centre-board casing broke away one day in a Meningie-Milan run and in came the water. Fergusen had his hands full with other problems, so he kicked off his trousers and shoved them into a hole, sailing on regardless (Baker and Reschke 1977:18).

He did remember how on calm days he would punt the vessel across the lakes using a 20-foot pole. The Fergusen newspaper interview is also revealing about the canniness of the schooner’s proprietors:

There was a government survey party that arrived at Milang in the steamer *Victoria* and wanted long poles for sounding the lake. Mr Dunk lent them his horse and cart to look for poles in the scrub. While they were away he hurried over and bought the poles from Mr Landseer. When the party returned from the scrub without any poles, Mr Dunk retailed his poles at a profit (*The Advertiser* 21/2/1959).

It is small wonder then that Dunk “bought out his rivals on the Meningie run and came to own the paddle steamers *Murray* and *Jupiter*” (*The Advertiser* 21/2/1959).

The Dunk sons

On August 19, 1924, W.P. Dunk died leaving his sons Albert Landseer Dunk (listed as “agent”) and Ernest Arthur Dunk (listed as “engineer”) as his executors (NAA A7509/3-5; D596 1941/522). E.A. Dunk later became
manager of the family business and also Harbour Master at Milang (Rees 1993:89). In keeping with the family shipping business he later married Eliza Tinks, daughter of James Tinks, whose son was a successful river captain (Rees 1993:90). Ownership and construction and adjustment dates are unclear for about a decade, although it is documented that Fergusen’s son, Norman, took over as captain of the vessel in the 1920s.

The Comptroller-General notes that ownership changes between the date of the Dunk sons’ acquisition of the vessel and the subsequent sale were not made official (NAA D596 1941/522). However he writes that unofficially A.C. Dodd bought the vessel from the “Executors”, the Dunks; that A.C. Dodd “assigned his estate to a Trustee having become bankrupt”; that “W.H. Dodd purchased the vessel from the Trustee of the bankrupt estate”; that “B.G. Hopgood and L.R Pavy purchased 32 shares each from W.H. Dodd.” Official records skip this period and acknowledge only a direct sale to Laurence Richard Pavy, listed as “boat proprietor” on November 3, 1932.

The Comptroller-General’s report continues:

As evidence that all intervening owners are agreeable to transfer of the ship being made a request for the transfer has been lodged signed by the Trustee A. C Dodd, W. H Dodd and B.G Hopwood (sic) (Exhibit “B”). Beyond their signatures there is no evidence to show that the signatories are identical with those persons were interested in the ship (NAA D596 1941/522).

Failing, however, to detect anything more than “neglect on the part of previous owners” the Comptroller-General signed off the document on September 5, 1932.
A newspaper article from the *Murray Valley Standard* helps shed light on this hazy period. Jack Dodd, brother-in-law of the second last owner of the vessel, Albert Murray Dennis, said in an interview that “before selling the vessel, Mr Dunk had her converted to power with twin screw and marine engines”. Dodd told the interviewer that “somewhere about 1925” his relation bought *Ada & Clara* “from an estate and used her as a houseboat at Mannum for a few years. She was purchased from Mr Dodd by Mssrs Davey [probably Pavy - see below] and Hopwood (sic), who used her for carrying mail between Milang and Narrung for some years” (*Murray Valley Standard* 9/12/1955:1a).

Laurence Richard Pavy and John Woodrow

The next registered owner was L.R. Pavy in November 1932 followed by John Woodrow, two years later, listed as “fisherman” in the official vessel’s records. In 1932 the vessel still had two masts (NAA D596 1941/522). Two years later, in 1934 the vessel underwent a complete overhaul. A Certificate of Survey, dated December 19, 1934 recorded no masts and two different engines: a 25 HP Redwing petrol engine from the U.S. and a 30 HP Peterborough Kero Engine from Peterborough, UK (NAA D596 1941/522). This document is attested the next day by the surveyor who notes his fee of £2, 16 shillings for railfare and 9 shillings for expenses. He states his total bill as £3 and 50 shillings.

From records it appears that Woodrow continued to make substantial changes to the shape of the vessel. In December 1934 he writes to request a remeasurement of *Ada & Clara* informing of an alteration to the breadth and
depth of the vessel. A month earlier he received his Certificate of Competency as a Second Class Enginedriver (SRSA GRG 51/135). This is substantiated by a newspaper advertisement which read: “Commencing on Monday 4th January, 1937, Mr J. Woodrow’s new up-to-date motor boat will leave Milang for Narrung on Mondays, Wednesdays and Fridays”. The advertisement states that this is a change from previous sailings, evidence that *Ada & Clara* had been a passenger boat, most likely since its masts were removed two years previously. The advertisement added: “This alteration will provide Narrung Residents and Visitors with a comfortable and convenient service to Adelaide at Reasonable Fares” (*The Southern Argus* 24/12/1936). This evidence is substantiated by official records which stated Woodrow made the conversions in 1935 (Arbon collection, Australian Murray River craft, SLSA PRG 1190/4/1). John Woodrow’s nephew, Victor Woodrow confirmed that it was his uncle who removed the two remaining masts. The vessel was used principally to carry passenger and livestock on the top deck until it was sold to George Henry Griffin in 1936 (Victor Woodrow 2007, pers. comm.)

George Henry Griffin and Albert Heinrich Jantke
Ownership changed again in December 1936 when George Henry Griffin, listed as a “motor mechanic”, and later “Captain” acquired the vessel, the same month that he passed his Second Class Enginedriver test (NAA D596/1941/522; SRSA GRG 51/135/4). The pair presumably continued as joint owners, although this is unclear from records. Some sources state that Griffin was responsible for converting *Ada & Clara* into a pleasure boat and renaming it *Showboat* (Parsons 1990:39; Kenderdine 1995:236-237).
Official records do not confirm this. However photographs of Ada & Clara, with the name Showboat painted on the side exist. Dates, though, for the photographs in SLSA’s archives can not be corroborated (Laura Dennis 2007, pers. comm.).

Arbert Heinrich Jantke, Albert Murray Dennis and Donald Murray Dennis

Albert Heinrich Jantke, listed as an “Engineer”, bought Ada & Clara for £500 in February 1941, although according to ownership documents Griffin continued to skipper the vessel for some time (D596 1941/522) (see Figure 3).

![Ada & Clara with Captain Griffin on foredeck. Photograph shows complete overhaul from original vessel. SLSA: PRG 1258/1/10. Photograph courtesy of the State Library of South Australia.](image)

This vessel was described at that date as being 58 feet, having a breadth of 14.8 feet and a depth of 4 feet. Records state that Albert Murray Dennis, listed as an “Engineer”, bought Ada & Clara in 1949 from Jantke, although Jantke continued to be involved with the vessel. On Dennis’s death,
ownership passed to his son, Donald Murray Dennis, an engineer and electrician, who assisted Jantke, though he never acquired the licence needed to drive the boat (Laurel Dennis 2007, pers. comm.).

Between March 1941 and 1943 it appears that Jantke installed two Fordson tractor engines driving twin propellers (SRSA GRG 51/239/1). Also the vessel’s dimensions grew to 60 feet in length, 15 feet in breadth with a 5 foot depth of hold (SRSA GRG 51/239/0/1). In 1943 Jantke reinforced several frames on orders from the ship surveyor. However the surveyor told him he could only carry 22 passengers, rather than the intended 100, until there were sufficient lifejackets. The following year the engineer declared the vessel safe for 100 people (SRSA GRG 51/236, SRSA GRG 51/237).

From 1947, however, Ada & Clara was becoming expensive to operate. In September the portside tail shaft and the fore end bearing were described as “very slack”. In 1951 the surveyor stated that “the vessel is in need of overhaul” and “temporary repairs” were ordered until “a slip becomes available”. Interestingly the surveyor noted on October 4, 1951 that Albert Dennis had informed him that repairs have been completed (SRSA GRG 51/236). However, according to a different surveyor’s report (this is known by the different handwriting) one month later on October 22, this does not appear to have been the case: “several plank ends, above water, to be refastened and some local rotted (sic) places to be patched. Four lifebuoys to be repaired. Exhaust pipe of port engine to be permanently repaired” (SRSA GRG 51/237). In 1952 a different surveyor noted that the portside planking was complete but “star (sic) side unfinished owing to flood covering boatbuilders workshop. Equipment OK”.
The final official record of *Ada & Clara* dated March 14, 1962 was a “request for de-registration”. Albert Jantke confirmed in a letter to the Registrar of British Ships that the vessel “is out of commission being beached at Goolwa” (NAA A7509/3-5).

Donald Dennis’s wife, Laurel, survives and has substantiated much of the official evidence. They married in 1949 and moved into *Ada & Clara*, which had become known as *Showboat*, although never registered as such (Parsons 1990:39, Kenderdine 1995:236-237) (see Figure 4).

![Figure 4. Photograph showing interior of *Ada & Clara* seating on lower deck. Sleeping quarters below. SLSA: B49599, Courtesy of the State Library of South Australia.](image)

They used it as a houseboat for 18 months although it was still used for passenger excursions from Murray Bridge on weekends. She recalled the vessel being adequate for their needs.
We had a small kitchen with a wood stove and a ladder below deck to a cabin with a double bed. I was newly married and didn’t know how to cook at all. I think I just cooked porridge (Laurel Dennis 2007, pers.comm.).

They had their first son, Michael, in May 1950, and continued to live aboard until August when they moved to Mrs Dennis’ mother’s house when her mother had become ill (Laurel Dennis 2007, pers.comm.).

The vessel sank at its moorings in December 1955. Emily May [Donald Dennis’ mother] telephoned to tell him he was needed to help pump out the boat (Kallan Dennis 2007, pers. comm.) The event made front page news:

The Showboat, tourist attraction at Murray Bridge for some years, sank at her moorings on the eastern side of the river on Sunday morning, and is two thirds submerged. This vessel, which has an interesting history, was owned by Mr A Dennis, who died recently. She has carried thousands of tourists on pleasure trips, both here and at Renmark (Murray Valley Standard 9/12/1955:1a).

Kallan Dennis, Donald’s son, born in 1953, said that his father towed the vessel down to Goolwa where it was left for some time at Moritz’s slip. By this time no effort was being made to keep it afloat and it was subject to random acts of salvage. Following a demand in 1968 by Goolwa council to clean up the river front, Ada & Clara was moved once more, this time to Veenstra’s slip (Steven Moritz 2007, pers.comm.). Mrs Dennis recalled how locals were upset by its continued scruffy presence: “People with speed boats were getting a bit uppity. They were hinting that they’d burn it if we didn’t get it out of the way. So we shifted it over to Aggie’s Creek.”

There Ada & Clara was eventually stripped of all its parts, engines, furniture, lifejackets and even a gramophone player, recalled Kallan Dennis
who helped with his father and brothers. The stripping continued over several months. Donald Dennis knew that a refurbishment would be too costly (Kallan Dennis 2007, pers. comm.).

A visit to Goolwa revealed that all the parts were moved to the Dennis farm there. Some parts still survive. These include the two propellers, balustrades and two wooden benches from the top deck, some Kapok-stuffed lifejackets which now lie in a disused sheep-shearing hanger, and one wooden bench from the lower deck. The farm still has a large collection of rusted parts from many different kinds of machinery including tractors. There is no order to the dumping. Kallan said he remembered weekends well as a child.

Dad used to collect stuff from everywhere and sometimes people would come and buy things. Sometimes he would decide it was a day for moving things around. We used to call those ‘musical junk’ days (Kallan Dennis 2007, pers. comm.).

Donald Dennis was a keen collector and would also use Scuba gear at sea looking for articles to salvage. He died in 1983 (Kallan Dennis 2007, pers. comm.).

Once the vessel was totally salvaged it was moved to where it currently lies on Hindmarsh Island on land that used to belong to the Newell family, relations of the Dennis’. Mrs Dennis said that since the Newells and the Dennis’ were related, “they didn’t mind us leaving the boat there”.

Conclusion

It has been possible, to some extent, to match different periods of construction and adjustments to *Ada & Clara* to different owners, and thus
to set different owners to their historical periods and to look briefly at what motivated them (see Table 1).

Table 1 The different stages of construction and alteration of *Ada & Clara* (NAA A7509/3-5; GRG 51/236 and GRG 51/237).

<table>
<thead>
<tr>
<th>Name</th>
<th>Location/and/or details</th>
<th>Date bought</th>
<th>Configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karl Frederick Ferdinand Kruse “Gentleman” also “Mariner” both in Registration certificates. Kruse dies 1911.</td>
<td>Milang</td>
<td>Aug 5, 1892 –</td>
<td>3 masts, 1 deck, carvel build round stern, overhanging bow, wood, Schooner. Tonnage: 27.10 /100 L: 59’2”, B: 14’9”, D: 4’6”</td>
</tr>
<tr>
<td>Thomas Richard Bowman (sale of mortgage – sept 1904)</td>
<td></td>
<td>April 7, 1905</td>
<td></td>
</tr>
<tr>
<td>Albert Landseer Dunk & Ernest Arthur Dunk</td>
<td>Morgan</td>
<td>Sept 9, 1924</td>
<td></td>
</tr>
<tr>
<td>Various owners: A.C. Dodd, W.H. Dodd, W.H. Hopgood & L.R. Pavy</td>
<td>Possibly located at Mannum for a short period as houseboat c. 1925</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Location</td>
<td>Date</td>
<td>Details</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Laurence Richard Pavy</td>
<td>Milang</td>
<td>Nov 3, 1932</td>
<td>Boats</td>
</tr>
<tr>
<td>“proprietor” with South</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Farmers’ Union</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ltd.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Woodrow “Fisherman”</td>
<td></td>
<td>Dec 19, 1934</td>
<td>Motor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>boat</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 deck,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 masts,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bulkheads, 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Redwing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>petrol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>engine (US) and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Peterborough</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kerosene</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>engine/boiler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>from Peter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brotherhood</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ltd, Peterborough.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L: 58", B: 14’8”, D: 3’7”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>round of beam: 1”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Length of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>engine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>room 17’. Top of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>beam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>amidships to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>top of keel: 4’</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carvel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>build.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Overhanging</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bow,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>stern: round</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>counter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>By December 1934</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>new engines added</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and all masts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>removed.</td>
</tr>
<tr>
<td>“Mechanic”/Woodrow still</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>part-time captain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albert Heinrich Jantke</td>
<td>Murray Bridge</td>
<td>March 5, 1941</td>
<td></td>
</tr>
<tr>
<td>“Engineer”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albert Jantke and Albert</td>
<td>Passenger vessel trading in</td>
<td>March 30, 1943</td>
<td>L: 60’, B: 15”, D 5’</td>
</tr>
<tr>
<td>Murray Dennis noted as joint</td>
<td>smooth water, based at Goolwa</td>
<td></td>
<td>Gross tonnage:</td>
</tr>
<tr>
<td>owners in GRG 51/236 from</td>
<td></td>
<td></td>
<td>71.15 less underdeck</td>
</tr>
<tr>
<td>surveyor’s reports</td>
<td></td>
<td></td>
<td>28.71. Two Fordson tractor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>engines, twin screws</td>
</tr>
<tr>
<td>Owners</td>
<td>Date</td>
<td>Details</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Same owners</td>
<td>March 9, 1946</td>
<td>Work done: several frames reinforced; new starboard tail shaft, “vessel in good order”</td>
<td></td>
</tr>
<tr>
<td>Same owners</td>
<td>Nov 11, 1946</td>
<td>Both engine thrusts to be secured; steering chains across aft decks to be secured by ramps. To be slipped at Morgan Nov 11, 1946</td>
<td></td>
</tr>
<tr>
<td>Same owner</td>
<td>17 Sept 1951</td>
<td>“vessel in need of overhaul” and temp repairs ordered until slip becomes available.</td>
<td></td>
</tr>
<tr>
<td>Same owner</td>
<td>Oct 4, 1951</td>
<td>Dennis advises repairs done</td>
<td></td>
</tr>
<tr>
<td>Albert Murray Dennis died 11/10/1955, Donald Murray Dennis takes over</td>
<td>June 27, 1952</td>
<td>“extensive repairs ordered. Several new planks on top sides; new rudder trunk; plank ends at counter to be supported.”</td>
<td></td>
</tr>
</tbody>
</table>
The demise of River Murray shipping, and hence the eventual abandonment of *Ada & Clara*, is rooted in the Great Depression of the late 1920s and early 1930s.

Trade shipping on the River Murray and lakes never recovered from this period (Baker and Reschke 1984:32; Parsons 1992:5; Painter 1993:87,91). By the mid 1930s boat usage on the river had begun to change considerably (*Walkabout* 9/1947:12-14). Some steamers, *Ruby, Colonel* and *Wanera* were being converted to houseboats. Others, such as *Echuca, Gunbower, Annie* and *Horace* were abandoned. The *Murray Pioneer* (27/4/1939:4b) in 1939 said: “they will never float again, but in their day carried thousands of tons of cargo on the Murray and its tributaries” It added that both steamers *Gem* and *Marion*, which had carried wool and general cargo for many years from Milang to Renmark, were, by 1938 being refurbished for passengers. *Ada & Clara* was no longer able to compete with the more luxurious passenger and tourist vessels on the River Murray. Even before its final abandonment, its last owners began to find the cost of upkeep too great for the minimal returns. River cargo transport would never recover from the
Great Depression. Furthermore, motorised transport and privately-owned business lorries and cars, and expanding rail links all combined to make the river trade increasingly inefficient and expensive (Phillips 1974:96; Tucker 1985:39; Parsons 1986:359; Kenderdine 1993:15; Painter 1993:90, 1998:58). Tourism was to become the River Murray’s new industry. “A few ship owners struggled on but none of those remaining regularly conveyed cargo or passengers on recognised routes and eventually the only remaining riverine ‘trade’ became tourism” (Parsons 1992:5). Figures support this. Before 1934 freights earned up to £60,000. After this date, the value dropped to a mere £6,000 (Bach 1976:133-158; Painter 1993:90). In 1939 the Murray Pioneer reported: “It’s a sad thing to see Bailey’s steamer and barges all tied up. They used to be fully employed but now only go out in the wool season “(27/4/1939:4b).

Another reason for the failure of the steamers was the dwindling wood supplies, which had been over-used in their heyday. Marion, for example, burnt 40 tons of wood on one round trip between Morgan and Goolwa in the 1860s (Davis 1978:46).

E.D.A Bagot of the Murray Shipping Company noticed the changing trend early in 1938. “The Murray,” he said, “is on the eve of an era of new development”. The Murray Pioneer reported him saying:

> extensive publicity would be undertaken to make the River (sic) as widely known as possible from a tourist point of view, and he considered that when its attractions were properly known, people would think nothing of coming from far distant parts of Australia to travel the Murray by boat (Murray Pioneer 13/1/1938:1a).
Ruth Esterhuizen, a late Goolwa resident, was nostalgic. She wrote that “the only boats ever seen are for leisure and pleasure, not for profit” (Esterhuizen [1980]). However even as early as 1912 *The Southern Argus*, wrote: “The white wings of the graceful sailing craft had vanished, the snort of the motor boats having replaced the sound of the flapping sails” (*The Southern Argus* 1/4/1912).
Chapter Two: A Neo-Marxist Approach

A Theoretical Framework
The neo-Marxist paradigm is a useful post-processual theoretical framework for interpreting *Ada & Clara*. The paradigm permits an analysis of the vessel’s historical and economic background, its existence and survival for over 60 years within a capitalist society that saw several booms and busts, whilst at the same time allowing for a focus on ideology and subjectivity.

It must be acknowledged, of course, that there is a vast array of competing and conflicting theoretical frameworks available with which to interpret the archaeological and historical resources of an abandoned shipwreck. According to Barret (2006), the archaeologist need not fear theory. He outlines its uses succinctly:

Theory can operate in two ways: it can facilitate the formulation of ideas about certain conditions, where those ideas can demand some kind of empirical investigation, or it can orientate our ways of looking at and interpreting certain conditions (Barrett 2006:142).

This utility of theory must be borne in mind when considering a useful framework to interpret an archaeological site. This thesis then acknowledges the wide array of theoretical movements, from processual archaeology, that is an explicitly scientific approach to archaeology which originated in the works of Binford (1962), to post-processual archaeology. The latter acts as an umbrella to various divergent and conflicting strands of thought, but which agrees on some principal tenets, the most important being subjectivity, or the acknowledgement that there are many possible interpretations of history or material culture, as will be seen.
Questions
This study intends to ask the following questions of Ada & Clara. First, what can the archaeological evidence reveal about the ideology of the locals involved with the vessel and their perception of it? In other words, can this study reveal anything about the society, or social, political, economic, environmental and technological context of the vessel? These questions may be answered by combining the archaeological, historical and ethnographic information collected during this research.

Second, can the vessel’s construction and adjustments be matched to its various owners or operators. If so, what does this tell us about those owners and operators? This question will be answered through the investigation of the following two questions:
a - how did the vessel’s construction change over time?
b - what percentage of original features remain?

In many archaeological ship studies there has been a tendency to concentrate on the technical specifics to the detriment of the broader economic and social conditions, thus placing “shipbuilding in a vacuum, where voices do not carry” (Hocker 2004:2). This study will attempt, therefore, to move away from a prevalent historical particularist approach – a method which concentrates on the particular and ignoring wider more general connotations - towards a holistic approach (Flatman 2003:143). It will first look at how neo-Marxism developed from traditional Marxist theory and the key differences between the two. It will then consider the importance of the role of ideology in interpretation. A discussion then follows on the definition of material culture and the neo-Marxist dialectical idealism (Althusser 1977,
1994; Leone 1981, 1982, 1999, 2005; Price 1982; Patterson 1990; Trigger 1993, 2006; Adams 2001; McGuire 2002) fitting comfortably with a neo-Marxist theoretical approach to ship construction analysis. The chapter will conclude with a critique of Kopytoff’s (1986) analysis of the “biographies” or different aspects of an object’s existence. Kopytoff’s approach meshes well with neo-Marxist thought where it can assist in placing material culture in its ideological and historical contexts. An object’s exchange value is steeped in politics in the sense of ideology and power conflicts and represents different interests to different people. A greater understanding of the object will lead to a better knowledge of the politics and wider contexts, and vice-versa.

Neo-Marxism

Neo-Marxism evolved from the French anthropological Marxism (Trigger 1993:174; Johnson 2005:95), which led away from traditional Marxist emphasis on materialism to stressing ideology. Traditional Marxists saw society from a scientific, positivist perspective, as Marx wrote in *The German Ideology*: “All social life is essentially practical” (1963:199). People were objects to be studied by scientists looking in (McGuire 2002:38). Similarly, traditional Marxists held strict empirical methods for interpreting data, or material practice, drawn from Marx’s writings: “History…does not explain practice from the idea but explains the formation of ideas from material practice” (Marx 1963:28-29).

The important difference between traditional and neo-Marxists, on the other hand, is argued succinctly by Barbara Price:
Idealist paradigms, in their most general form, presume that behaviour is caused by ideas, beliefs, values, cognitions, and comparable mental templates…Materialism, by contrast, affirms that the causes of behaviour are…sought with consistent reference to the material conditions of life (Price 1982:209).

In other words, whereas traditional Marxists were concerned with the material, observed behaviour, neo-Marxists understood that ideas, beliefs, ideology could be hidden within the material culture.

It is easy to see then, that while traditional Marxist archaeologists were labelled processualists, neo-Marxists fell under the post-processual umbrella of thought and held many ideas in common with other leading post-processual thinkers.

This section has outlined the principal differences between Marxists and neo-Marxists and the move from processual archaeology as a way of interpreting data. It leads into a discussion on the definition of what ideology means for neo-Marxists.

For Althusser, a leading voice for neo-Marxists, the concept of ideology was key to the new thinking (Althusser 1977:167, 1994:123, 126; Leone 1982:748). Ideology is essentially a veil to disguise the reality of conflict between the social relations of production (Leone:1982:748). It is a powerful social force which refers to the implicit beliefs of a social group, or class that is taken for granted and serves to mask the exploitation of the ruling class. Not only can ideology force change, it can also reinforce the status quo,
perhaps by hiding the economic realities from the people in order to guarantee cooperation (Leone 1982:749).

Thus ideology also defines people’s relations to each other (Adams 2001:302). Both Marxist and neo-Marxist thought is rooted in conflict as a way of explaining change. The difference for neo-Marxists is that the ideology is hidden, whereas for the traditionalists, it is “publicly observable behaviour rather than mental activity [that] constitutes the legitimate domain of investigation” (Patterson 1990:194). So, critically, this introduces the self-reflexive and subjective aspect of the theory, an aspect which is also shared by other post-processualists. Leone explains it clearly, arguing that once an archaeologist

understands that history and archaeology are not neutral or culture-free pursuits, but part of an ideological process of his or her own society, then the categories that generate a particular reconstruction of the past may be examined for their role in generating interpretation of it (Leone 1982:750).

In other words, by understanding the existence of ideology and the way it operates, the archaeologist will also notice that his or her own current ideology may be masking the way the past is viewed in his or her own image. The archaeologist’s viewpoint will always be subjective (Meltzer 1981:113-125; Burris 1987; Leone 1999:7). This is also noted by Patterson who understood that for neo-Marxists, although ideology may not be immediately obvious in the material culture, “it shaped social relations and provided the dialectical or mediated linkage between them and political economy” (Patterson 1990:193).
As noted previously, subjectivity is an aspect shared by other post-processualists. It is important here to again clarify briefly where neo-Marxists and other post-processualists diverge. The principal disagreement is over the concept of agency. Whereas neo-Marxists are concerned with social groupings and the fact that individuals act within a social group and not independently, post-processualist archaeologists such as Hodder, emphasise free will where “individuals are not simple instruments in some orchestrated game” (Hodder 1982:5) (see also Johnson 2005:104).

This section has attempted to briefly define ideology as understood by neo-Marxists. It has introduced the concept of the dialectic which will shortly be discussed more fully in relation to material culture, and just how the study of material culture can help archaeologists understand concealed ideology.

Whereas processualists view material culture as something that can be analysed empirically, and that human behaviour could be inferred from it by studying patterns (McGuire 2002:100), neo-Marxists understand it as part of a totality. For them, it embodies social relations. It is both a product of social relations and helps shape social relations. Thus, as McGuire states, material culture is more than a sum of its parts: it is part of the social process (McGuire 2002:102-104). But how do we study material culture? Price argues that although material culture may appear to be solid material, it is “neither materialist nor idealist…only the reasoning, the research strategy imposed on the data and not the “facts” themselves, are so classifiable” (Price 1982:727). In other words this can be taken to mean that all interpretations are subjective and that such an interpretation can help to
understand the ideology, or social relations of those who created the material culture in the first place.

This argument introduces the dialectic nature of material culture. Briefly, the notion of the dialectic is one in which society is dynamic, forever changing through a series of conflicts. When change occurs in one section, a shift will occur in another part and will thus change the social whole. The whole is driven by a series of contradictions (McGuire 2002:94). As we have seen, material culture is not passive, because not only is it a product of human action and the labour process, it is also something that links groups and individuals and can be interpreted differently by different groups.

McGuire illustrates below the dialectic nature of material culture:

The material world of archaeology and the data we generate do not exist independent of thought but that only by struggling to find correspondence between our views of reality and the material world can we generate data and true understanding (McGuire 2006:68-69).

Leone defines the dialectic nature of material culture similarly. It is “the meaning the present imposes on data from another time and which the present thus feeds on itself” (Leone 1981:5).

This section has attempted to describe the role of material culture in a neo-Marxist interpretation of archaeology. Thus far, this study has looked at the development of neo-Marxism, defined the concept of ideology and considered how material culture and its dialectic nature can help archaeologists understand the past, albeit subjectively. Below, this study will
attempt to link these definitions and discussions to an interpretation of *Ada and Clara*, following a brief discussion of the dialectic and the ship.

The Dialectic, The Ship and *Ada & Clara*
So how can the dialectic nature of material culture help the interpretation process for *Ada & Clara*? It can assist, for one, in understanding technological development. Studies by some maritime archaeologists are compatible with a neo-Marxist perspective: Cederlund points out, for example, that maritime archaeology evolved primarily because of the position of the ship once being in the “central position in the economic systems of many societies” (Cederlund 1995:9). There are two related confrontations in maritime culture, that between humans and nature, and that between different classes, in other words, the basic relations of production (Flatman 2003:149). Maritime culture is split between the culture of the common seaman and that of the corporate culture which grew out of humans’ confrontation with nature (Rediker 1987:154-155). The ideology forged by the ruling elite was able to mask its exploitation of the common seaman. *Ada & Clara* is a good of example of this.

Just as Trigger argued that “new technologies were interpreted both as responses to social and economic change and as a major force bringing such change about” (Trigger 2006:445), *Ada & Clara’s* owners had to react not only to a changing economic and social situation, but to changing available technologies. The vessel’s owners lived in a capitalist environment and they faced the dilemma of whether to adapt or not. To not have done so, according to the pervading ideology of the ruling elite, would have spelt the
end of their livelihood. Adams (2001) illustrates the seeming paradox between traditional practice and the desire to suppress change and the interplay between these practitioners and wider society: “It is this constant dialectic tension that leads to change” (Adams 2001:302). It can be understood then that later owners of Ada & Clara, representing one social group or class, were forced to adapt the vessel’s construction for different use. In other words Ada & Clara may be interpreted as being at the centre of complex dialectics between economic change brought about by two world wars and two depressions, and the lessening influence of the traditional local riverine society of the River Murray. Thus Ada & Clara is the result of this dialectic relationship, the relations of exploitation between different social groups. The neo-Marxist lens, very much concerned with class, can help archaeologists to interpret social hierarchy at work, the relations and division of labour. Who, or what, for example, were the different catalysts for different periods of construction and alteration of Ada & Clara?

So each instance of alteration of the vessel can be the result of different dialectic relationships. This interpretative process essentially involves the systematic investigation of both the general (Ada & Clara in its wider ideological context) and the particular (its archaeological remains). Stimuli include the environment (the physical and geographical centre of the vessel), the economics (wealth and labour resources required to build and operate the vessel), ideology (the ideas of the owners and builders and the vessel, and those of the ruling elite) and available raw materials (Adams 2001:303).

This section has attempted to introduce Ada & Clara into the theoretical framework of neo-Marxism, by drawing in the previously discussed strands
of the theory. Thus it has been shown in some part how the vessel as material culture can help to interpret some understanding of its owners and operators within its different historical and economic settings over the years. This study will finally look briefly at another useful interpretative tool for *Ada & Clara*.

Ships Have Biographies

Kopytoff (1986) and Gosden and Marshall (1999) provide another useful interpretative tool for the examination of vessels, drawing on the neo-Marxist lens (see also Leone 1999:16). A ship has different ‘biographies’ depending on which social group is interpreting it and upon the pervading ideology of the ruling elite. An object has different “biographies”:

One biography may concentrate on its place in the owner-family’s economy, another may relate to the history of its ownership to the society’s class structure, and a third may focus on its role in the sociology of the family’s kin relations (Kopytoff 1986: 68).

By focusing on a vessel’s various uses through the years, a study of its social, cultural, historical, aesthetic and economic relevance should emerge. As Murphy (1983) said: “the life of a ship and its use will be reflected in its material remains” (Murphy 1983:75). Kopytoff’s discussion emphasises the nature of archaeology as a process, saying that the “decommoditization” of an object (Kopytoff 1983:76) means simply that its status has been redefined. It has not ceased to exist (see also Richards 2002). Abandonment, he argues, does not mean the end:

The fact that an object is bought or exchanged says nothing about its subsequent status and whether it will remain a commodity or not. But unless formally decommoditized, commoditized things remain potential commodities – they
continue to have an exchange value, even if they have been effectively withdrawn from their exchange sphere and deactivated, so to speak, as commodities. This deactivation leaves them open…to…redefinitions (Kopytoff 1986:76).

In the case of Ada & Clara in its current situation, there are different exchange values depending on a person’s vantage point (Kopytoff 1986:57, 80-81). Later, at the end of the vessel’s working life, different interpretations can be made and a different dialectic can be seen, here between the needs of a one social group, the Dennis family, and another, the middle classes’ desire to keep items of historical value for the community to appreciate it. Part of the tension, or the dialectic, argues Kopytoff, is due to the fact that not all parties “share the same interests in any specific regime of value” (Kopytoff 1986:57). For the Dennis family, the last owners of Ada & Clara, once the vessel had sunk at its moorings, there were few tears. Rather, its exchange value was redefined to one of salvage. All removable items were taken and many were sold (Kallan Dennis 2007, pers. comm.). This difference of interpretations as outlined above offers a genuine ethnographic understanding of the different needs of different groups in society, as seen through a neo-Marxist perspective (Flatman 2003:147).

Conclusion

This study has outlined the theoretical framework to be used for the interpretation of Ada & Clara. It began with a discussion on how neo-Marxism developed from traditional Marxist theory and its key differences. It then considered the importance of the role of ideology in interpretation, noting the key agreements with post-processualists – the notion of subjectivity, and the key divergence – the neo-Marxist view that post-processualists are too focused on the individual. A discussion then followed
on the definition of material culture and the neo-Marxist dialectical idealism fitting comfortably with a neo-Marxist theoretical approach to ship construction analysis. This study also made a brief discussion of the use of Kopytoff’s analysis of the “biographies” or different aspects of an object’s existence. It is hoped that through the theoretical lens outlined above a sense of the lives and characters of the different owners and operators will emerge from the remains of the vessel in its current setting. Likewise the study should reveal a greater understanding of the social, political, economic, environmental and technological context.
Chapter Three: Methodology

In February 2007, the Maritime Archaeology Department of Flinders University conducted a field school in the area of Victor Harbor, South Australia. One of the sites on which work was conducted was that of the abandoned wreck, Ada & Clara. Although little remains of the vessel itself, the structure is still evident. There are both iron and wood frames, an iron keelson and iron sisters and bilge stringers.

The aim of this chapter is to outline the methodology, past and present, used on the site of Ada & Clara. It will also describe the methods used off-site at Laurel Dennis’s farm and Delan Dennis’s farm, in Goolwa, where remains of the vessel were found. Chapter 4 will then present the results.

Previous fieldwork

Students from a Flinders University field school conducted a survey on the Ada & Clara site in February 2007. The work was primarily non-disturbance although a 5 mm diameter metal probe was used at the stern of the vessel in an attempt to detect archaeological remains below the mudflats. This was done following the use of a metal-detector (Excalibur 1000) in order to see if any engine parts remained. The test was inconclusive and data from this test are no longer available.

A site survey was undertaken using two separate methods. First, using a Total Station, each frame was measured and fed into Site Recorder®, a GIS programme. A survey using basic offsets from the keel was also conducted.
The drawing that emerged from the measurements was also fed into Site Recorder®. The results are detailed in this chapter as they represent preliminary findings and will not be used in the final analysis. However, they are an important factor in considerations for future work (see Chapter 5).

GIS
Geographical Information System (GIS) is a means of acquiring, organising, storing and disseminating data which has been geographically referenced. A number of computer programmes exist to control this data. Site Recorder® was designed specifically with archaeologists, maritime and terrestrial, in mind. Its 3D capacity is particularly useful for recording sites. It is capable of capturing, storing and disseminating complex information. When applied correctly, it is an excellent tool which goes beyond traditional archaeological methods (Llobera 2001:1005-1014). It is for these reasons cited here that Site Recorder® was utilised during the Field School.

Results of prior fieldwork
The following figures represent the results of the February 2007 fieldwork. Site Recorder® was used to input the site plan over which were laid the Total Station points. Using the trace tool in the programme, the site plan was sketched over in order to indicate different construction materials: wood and iron. Figure 5 below is the original site plan. In Figures 6 and 7, the blue lines represent the iron I-frames and the hatched red and white areas represent wooden frames. The iron frames are seen in green and the wooden planking is brown. The Total Station data points are blue.
Figure 5. Original site plan inserted into Site Recorder®
Figure 6. Site plan after being traced.
Figure 7. Site plan with total station points added.
Limitations of results

User error of the Total Station unit meant that not only was the z-plane not recorded (thereby leaving the site in two dimensions rather than three), but the Total Station points (Figure 7) do not correspond exactly with the frames, thus losing the accuracy that *Site Recorder®* is primarily designed for. The z-plane could have been partially corrected by taking height points manually from the tops of each frames to the ground. However this process was deemed unnecessary for the purposes of this thesis which required, above all, a focus on important sections of the vessel where construction alteration is evident. A further limitation was the poor quality of the images. Thus for the purposes of this particular thesis this GIS approach was abandoned, acknowledging that for any future work, the Total Station points would need to be repeated and overlayed upon a new clean and more detailed site plan drawn to a larger scale.

Environment

The River Murray is over 60 million years old, dating to the time the Australian continent began its northward drift after splitting from Gondwanaland (Mackay and Eastburn 1990: ix). The lush rainforests then gave way to a more arid landscape with plant species able to cope with unpredictable flooding and long drought periods. The Murray began to be regulated only in the last 200 years when vessels started to use it as a trading route. Following the clearing of native vegetation for habitation, shipbuilding and ship operation (steamers), rainfall moved deeper through the soil forcing salty groundwater into the Murray (Bonython and Frith 1974:331; Mackay and Eastburn 1990:ix). This also increased erosion as land clearing led to greater run-off (Young 2001:47). The Murray is also vulnerable to the effects of industrial pollution because of its low flow.
(Mackay and Eastburn 1990:xviii). Current drought conditions mean that the river flow is substantially reduced. Anoxic conditions in lowland areas are one result of the low flow. In some cases only anaerobic bacteria can survive in such areas (Young 2001:74). This means that below the surface Ada & Clara is being protected by the anaerobic conditions. This is because most bacteria break down organic matter, such as wood, in aerobic conditions only (Young 2001:173). However above the water, marine encrustations that are usually flushed away by the fresh water flow, have remained and are growing in force, attaching itself to the timbers.

Methodology for current fieldwork
The methodology for the fieldwork is divided into two sections. The first discusses recording methods used on Ada & Clara material culture off-site, on the farm land belonging to Laurel Dennis. The second refers to work conducted on the vessel remains themselves. In both instances the sites were terrestrial and no diving equipment was required.

Ada & Clara is located on the mudflats of the south central edge of Hindmarsh Island (see Figure 8). Using WGS 84 datum, the coordinates for the site were found to be 54H 0304825 6065620 with an accuracy of +/- 4 m. The vessel lies north-south, its stern believed to be at the north end (see Chapter five). It is an inter-tidal site so any archaeological work is limited to periods of low tide during the Southern Hemisphere summer months (November-May).
Off site work

Three benches (two from the top deck) and one free-standing one from the main deck (Kallan Dennis 2007, pers. comm.) were photographed using a scale. A scaled drawing was done of one bench (see Chapter 4, Figure 12). Also found by members of the Dennis family were an indeterminate number of kapok-stuffed lifejackets, five sections of balustrade from the top deck, two propellers, one hemp fender and a safety rescue ring marked with the name *Ada & Clara* and Port Adelaide, its port of registry.
On-site work

Four days were set aside to record the site. First a new site plan was plotted on a 1:10 scale in millimetres (mm). This was because the previous site plan was deemed to be lacking detail. A baseline was set the length of the vessel, approximately 30 mm to starboard of the keelson. The author then assigned pairs to work on either side of the baseline to collect offset measurements. It was decided to draw in the field because any errors would then be immediately visible and possible to correct. Room and space measurements of the first futtocks were taken. Frame station numbering began at the bow with port side frames starting at port 1 frame (PF1) and starboard side frames beginning at SF1, also from the bow.

Finally an excavation was conducted towards the starboard stern section using a trowel, spade and hands. One unit measured 1 m squared. An adjacent unit was between SF33 and SF34. As the site was waterlogged, a visual inspection was not possible. Inspection was therefore done by touch alone. This author then assigned one section to be drawn to scale in great detail. The section was chosen as being representative of major and important alterations to the structure of the vessel. Each student was equipped with a tape measure and drawing material. Results were initially drawn on Mylar. They were then photocopied on a calibrated machine and subsequently inked onto a fresh roll of Mylar. This was later copied and scanned into a computer.

Limitations of study

Weather conditions for three out of the four days in the field were unexpectedly bad. The wreck site was expected to be clear of water during low tide. However strong southerly winds forced in high water levels. This
meant that the work schedule had to be adapted accordingly. The site plan, which was expected to take one day, took three to record. Minor inaccuracies also crept in as the baseline was pushed by the force of the wind and waves (see Figure 9). The water levels subsided sufficiently on the final day to allow a very small scale excavation.

![Figure 9. Site conditions. (J. Berry 2007).](image)

Conclusion

This chapter has outlined earlier work on the site and highlighted its limitations. It then summarised the methodology of current work both on and off-site. The following chapter presents the results of the archaeological work.
Chapter Four: Results of Fieldwork

This chapter presents the results of the fieldwork described in Chapter 3. Included are details of both the material culture found off-site and detailed scaled drawings of Ada & Clara. There is a brief section on the likely timber used in the construction of the vessel and the problems identifying it.

Results of off-site work
The three benches, two propellers, one hemp fender (Delan Dennis 2007, pers. comm.) and kapok-stuffed lifejackets were all found on Laurel Dennis’ farm land. Apart from the benches, the rest were lying buried amongst “junk” (Kallan Dennis 2007, pers.comm.) in various farm sheds. The lifejackets were strewn across the back of a former sheep-shearing shed. The fender and the two propellers were stored out of site in another shed gathering dust. Finally a cork-stuffed life ring was found by Delan Dennis in a shed at the back of his farm, out of site. It was not known which propeller was for the port engine and which for the starboard (Delan Dennis 2007, pers. comm.).

Benches
The two top deck benches were of the same construction style, showing signs of having been repaired. This repair was evident through a visual inspection of the timber slates which showed that there were at least two types of timber: Eucalyptus marginata (Jarrah) and pine (type unknown) (Kallan Dennis 2007, pers.comm.). The visual inspection was assisted by Kallan Dennis who offered to peel off a fine layer of timber to reveal the colour of the wood.
Figure 10. Performing a visual inspection of the bench timber. (J. Berry 2007)

Figure 11. One of Ada & Clara’s top deck benches. (J. Berry 2007).

The bench measured 870 mm in height and had a width (profile plan) of 530 mm. The bench had 12 slats, and one iron supporting cross beam at the back measuring 940 mm. The slats themselves were 25 mm thick, 43 mm wide and were 1500 mm in length. The distance between each slat was 30 mm. Fittings consisted of a 40 mm long bolt, 19 mm in diameter, and a square washer. The height of the bench from the ground was 360 mm.
Propellers
The two propellers differed in overall size by 20 mm. The evident verdigris indicated that they were likely a copper alloy (see Figures 13 and 14). Both propellers had an aperture of 30 mm. However the distance between the tips of each shaft was only 580 mm for the first propeller (Figure 13) and 600 mm for the second propeller (Figure 14).
Figure 13. First propeller showing key dimensions. (J. Berry 2007)

Figure 14. Second propeller showing key dimensions. (J. Berry 2007)
Fender, lifejackets and life ring
The fender, made entirely of hemp (Delan Dennis 2007, pers. comm.) was believed to have come from *Ada & Clara* (Figure 15). It measured 430 mm in height and was 400 mm across.

The safety ring was made of cork with a cloth cover that was stitched at the sides (see Figures 16 and 17). The name *Ada & Clara* and Port Adelaide, its port of registry, were inked on its surface. Electrical tape was strapped around one side which indicated possible attempts at repair.

Rotten kapok-stuffed lifejackets were found at the back of a former sheep-shearing shed on Dennis property (see Figure 18).

![Hemp fender (J. Berry 2007)](image-url)
Figure 16. Life ring as it was found in a shed under a table (J. Berry 2007)

Figure 17. Scaled photograph of life ring. (J. Berry 2007)
Balustrades
Balustrades from the top deck now serve the purpose of helping to keep sheep out from the neighbouring farm (Kallan Dennis 2007, pers. comm) (see Figure 19). There were five connecting sections, each one measuring 490 mm in length and 830 mm in height. They were connected by hollow steel piping. Each connecting I-piece measured 60 mm along, was 50 mm in height. The hollow tube was 23 mm in diameter. Rusting iron quadrilateral-shaped wire mesh formed the bulk of the fencing. Each quadrilateral shape measured 70 mm in width and was 63 mm in height.
Results of on-site work: Ada & Clara

Keel assembly and stringers
The length overall of the wreck measured approximately 18 m in length with a widest width of 5 m. Frames were a mix of timber and iron. The keel assembly consisted of one keelson and two sister keelsons. The keel itself was buried beneath the mud and was not observed during the survey. The keelson was an iron I-frame. It measured 200 mm moulded and 150 mm sided. The starboard sister keelson measured 70 mm moulded and 100 mm sided. It was located 150 mm distance from the keelson and ran approximately parallel to it. On the port side the sister keelson also measured 70 mm by 100 mm but the distance from the keelson to the sister was approximately 100 mm. The iron assemblage had little evidence of concretion which indicated that most of it was likely made of galvanised iron. This too applied to the fasteners.
Stringers
Two bilge stringers were identified (see Figure 21). The bilge stringer on the port side was buried beneath the mud. The stringers on both sides consisted of two parts and were joined together by six iron bolts measuring 20 mm in diameter (see Figure 20).

Figure 20. Iron bolts through starboard stringer. Image extracted from site plan.
Figure 21. Site plan of *Ada & Clara* by J. Berry, C. Dappert, N. Ortmann, R. Bullers, K. Keeping, P. Ross, J. McKinnon, J. Kimura.
Frames
A total of 81 futtocks were recorded, 42 on the starboard side and 39 on the port side. Most were deteriorated, of which 46 were iron angle frames, of the type used in fence construction (Kingsley Haskett 2007, pers. comm.). It is important to distinguish in this case between the futtocks and floors on *Ada & Clara*. This is because the iron frames only occur as futtocks and not as floors. Similarly there did not appear to be much correlation between the floors and futtocks.

The largest timber futtock (SF11) had sided and moulded dimensions of 100 mm squared. Each angle iron measured 50 mm by 50 mm and, like the timbers, varied considerably in height according to rates of deterioration. There was no identifiable room and space pattern (see Tables 2 and 3 and Figure 22). The widest space was 830 mm between frame SF9 and SF10. Frame SF9 was an angle iron and SF10 was a decayed timber frame with sided and moulded dimensions of 90 mm. In some cases there was no space where either two angle irons were adjoined or a timber and angle iron frame were adjoined. However it is worth noting that there was no evidence of the timber frames joined as double frames. (Appendix 1 and 2 indicate the arrangement and position of the futtocks on the starboard and port sides. They also denote whether the frame is iron or timber. Numbers increase with distance from the bow so that SF1 and PF1 are the foremost bow futtocks.)
Figure 22. A profile view of section between SF18 to SF24 showing frame arrangement and iron plate (C. Dappert 2007)

Some frame assemblies consisted of angle iron bolted into a timber frame, though not all. The most obvious example of this was found at PF18 and PF19 (see Figure 23).

Figure 23. Frames PF18 and PF19 (J. Berry 2007)
Another common visible timber arrangement was that of adjoining frames. Frames found in the excavation unit within the area of SF32 illustrate this arrangement. Here they are joined by an iron fastening (see Figure 24 below).

Figure 24. Excavation unit showing example of frame assembly. Image extracted from site plan.

Only one frame extended from the keelson to the side of the vessel and consisted of timber floor and futtock. These components were joined by a single iron bolt and the whole frame was 1.75 m long. Furthermore the floors only appear to go as far as the bilge with the futtocks joined alongside. It is noteworthy that archaeological evidence to date shows that while double timber framing was common in Australian-built vessels of this period (see Bullers 2006; O’Reilly 2007) Ada & Clara’s construction does not appear to
to conform to this model. It is also important to note that these studies have focused primarily on ocean-going vessels, not vessels built for inland waterways.

There was no indication how the outer hull planking was attached to the frames. A neighbouring excavation unit (denoted on the site plan) indicated that the outer hull planking was 300 mm beneath the surface of the mud. Nearer the starboard edge in the main excavation unit, the vertical distance from the surface of the mud to the hull planking within the area of SF32 was greater by 500 mm. This was likely due to the fact that the outer planking had splayed out. However, it was not possible to determine the position of the waterline.

Planking
Planking thickness was between 30-35 mm with a 200-210 mm width and had an average length of 150 mm. The planking was badly deteriorated above the mud level where there were two rows of strakes. The planks were fastened to both iron and timber frames using iron bolts. Only one wooden treenail was found (see fastenings section). It was not possible to state at what level above the waterline the strakes were situated. On sections of the port side planks had fallen away from the futtocks where fastenings had deteriorated.

Iron plates
Seven iron plates of varying dimensions were identified (see Figure 25). The largest one, which was located near the port bow, measured 260 mm by 150 mm with a thickness of 20 mm. Archival records suggest that they were “patching”. On October 11, 1951 a surveyor noted that “several plank ends,
above water, to be refastened and some local rotted places to be patched” (GRG 51/237). There was no discernible pattern to their placing or relation to other scantlings.

Figure 25. Galvanised iron plate. (J. Berry 2007).

Fastenings
The majority of fastenings were galvanised iron bolts of various dimensions. The most common were bolts with a diameter of 20 mm with a nut of 40 mm squared (see Figure 26).

Figure 26. Section of planking showing bolts with square nuts. Image extracted from site plan.
There were 15 mm bolt holes in the angle irons. On average timber frames had 20 mm diameter galvanised iron bolts. There were 10 mm bolts with 25 mm nuts. Bolts measuring 10 mm found in the planking would likely have fastened the timbers to the frames. Only one wooden treenail was found in a timber floor at the end of the starboard bilge stringer at the stern.

Deadwood
A section of timber believed to be the deadwood measured 650 mm in length, 150 mm in width and had a depth of 150 mm. It had three iron bolts with a diameter of 20 mm (see Figure 27).

![Figure 27. Likely deadwood at stern. Image extracted from site plan.](image)

Stempost component
The section believed to be the stempost was 100 mm sided and moulded (see Figure 28). As it was a single piece of timber and it was not possible to see
how it was connected to the keel, it was impossible to state with certainty whether this was the apron, cutwater or even gripe. The length protruding from the mud was about 300 mm. It had a 20 mm bolt hole and a heavily corroded 10-15 mm bolt. The timber was in an advanced state of deterioration.

![Figure 28](image). Suspected stempost. (K. Winslow 2007).

Timber

Whilst it was not the purpose of this study to make an in-depth analysis of the timber remains of *Ada & Clara*, a visual inspection was attempted of the waterlogged frames. This indicated that they were a hardwood and likely to be a type of Red Gum. This prognosis was acquired by examining the colour and density of the timber (Baker 1919:3-5; Rick Bullers 2007, pers. comm.). Further tests would be required to determine if they were from the *Eucalyptus camaldulensis* species. It was not possible to note a likely genus for the hull planking.
Conclusion

This chapter presented the results of the field work. It has shown the dimensions of the vessel, including frames and the keelson assembly, and it has examined the fastenings dimensions. Further it has incorporated material culture found off-site associated with Ada & Clara. These results permit an interpretation of the site which follows in Chapter 5.
Chapter Five: Interpretation

This chapter will analyse the results of the fieldwork conducted on Ada & Clara itself and on the material culture found off-site. In doing so it will attempt to draw together the various strands of this thesis, by considering how the documentary evidence correlates with the archaeological and oral evidence. Furthermore it will consider how the proposed neo-Marxist theoretical framework is suitable for this study and whether it has been possible to answer any of the thesis questions.

On-site interpretation

A close examination of the site indicates that the vessel is likely lying with its bow pointing into the River Murray. This is shown by the presence of a reinforced iron keel assembly there where the two Fordson tractor engines would have sat.

An inspection of the keel assembly indicated that the I-frame was most probably installed as reinforcement when the centre boards were removed (Kingsley Haskett 2007, pers. comm.). This would have been necessary when Ada & Clara became a passenger vessel, probably in the 1930s (see Chapter 1). From that time it was also required to navigate the much shallower River Murray. John Woodrow, the likely effector of this change, complied with a local adage that a good flat river boat “could float on a heavy dew” (Parsons 1987:125). Furthermore it is likely that the two Fordson tractor engines would have been placed aft, one on either side of the keelson, on top of the supporting bilge stringers. A raised segment of timber
at the level of PF34 next to the bilge stringer was probably an engine foot (Kingsley Haskett 2007, pers. comm.).

It is most likely then, that angle irons were added to facilitate the installation of an extra deck, probably by Woodrow at the time that Ada & Clara was converted to carry passengers. It is known Woodrow carried passengers and also cargo on a top deck, as seen in Chapter 1. This construction technique was common in many riverine vessels (Kingsley Haskett 2007, pers.comm.). Steel bars would have been bolted to the angle irons through the holes that now remain. They could not have been welded as that technique did not come into being until World War II. A deck would then have been laid on top. These steel bars were removed by Donald Dennis as they still held commercial value. It is also noteworthy that while the angle irons were most likely foremost used for the construction of a second deck, they could also have been used to reinforce existing frames. Indeed surveyors ordered that several frames be reinforced on March 30, 1943 (GRG 51/237) (see Chapter 1). Thus it is possible that the angle irons use was twofold: one was to support a second deck, and the second was to reinforce existing timber frames.

The structure of frames, with little or no discernible pattern to room and space, as well as the later addition of angle iron for frames, however, makes analysis of the framework against the requirements of Australian Lloyds (1864: 44a) difficult. It is known (see Chapter 1) that Ada & Clara was given A1 classification in 1915. However no such classification was given in later years. On the existing archaeological evidence with the visible myriad vessel alterations, this does not seem surprising.
Minimum Resources
The presence of seven iron plates seems to indicate that repair and refit was conducted with a minimum of resources. The archival records appear to match the archaeological finds in this area. Two separate ship surveyors note the need for “patching” and bolt replacement during the time when Albert Dennis and Albert Murray were operating the vessel (GRG 51/236 and 237). These details are born out by evidence from Laurel Dennis (2007, pers. com.) who stated that the vessel was becoming increasingly expensive to run. This statement was supported by the fact that when *Ada & Clara* sank at its moorings in December 1955 it was not refloated for use (see Chapter 1).

Laurel Dennis’ testimony, as above, is vital to linking some important recent archaeological and archival evidence as well as oral history. Albert Dennis’s statement to a surveyor on October 4, 1951 that all repairs had been carried out, is contradicted by a different surveyor two weeks later who stated that some “local rotted places to be patched” (GRG 51/237). Another indication that refits and alterations to *Ada & Clara* were likely completed to the minimum standard is the fact that no effort was made to install the same orientation of angle iron throughout the vessel. The installation is, at best, haphazard. Furthermore the presence of iron bolt fastenings below the waterline rather than treenails is possibly a further indication of the lack of quality in the construction. Iron bolts were not commonly used below the waterline because of corrosion, whereas treenails expand to fit the fastening hole and prevent water seepage.
Timber
A visual identification of the timber used on Ada & Clara was conducted because a positive identification to the genus level could potentially provide a better understanding of the vessel’s owners and operators and the economic factors that affected them. It is believed, as stated in Chapter 4, that the frame timber was *E. camaldulensis*, a locally grown wood. This could indicate that the owners used what was cheap and readily available. However, there is a caveat. A positive identification in the laboratory might not necessarily show that this was a cheaper practice. Many other factors would apply, such as availability and the number of workers. This could not be ascertained by a search of historical literature.

It is worth noting that previous studies of shipbuilding in South Australia (see Jeffery 1989; Kenderdine and Jeffery 1992; Coroneos 1997; Coroneos and McKinnon 1997; Bullers 2006; O’Reilly 2007) have been too wide ranging geographically to provide a useful comparison for timber used on Ada & Clara and thus allow for educated guesswork. However some studies have shown that some local builders used exclusively locally grown timber on their vessels. Frank Potts built the steamers Beltana in 1873 and Wilcannia in 1875 from *E. camaldulensis*, timber from his property in Echunga (Baker and Reschke 1977:18; Rees 1993:105). *E. camaldulensis* is one of Australia’s most common trees (Baker 1919:3). It grows along rivers and flood plains and is common along the main Murray River channel. It is fast growing, strong and durable, and good at resisting attacks from marine borers (Chamier 1887; Andas [1952]; Dallwitz 1989; CSIRO [2001]).
Research questions
It is clear from the stated archaeological evidence that it is not possible to answer one of this thesis’ questions: what percentage of original features remain? It is, however, quite evident that the vessel’s construction changed considerably over time. It is also possible to pinpoint, using archival and archaeological evidence, different periods of alteration. While John Woodrow’s handiwork was discernible in the conversion to a two-decked vessel, it was also possible to see that Albert and Donald Dennis and Albert Jantke were likely under financial pressure and making minimum repairs and refits when required. Evidence of preceding owners and operators, however, were not visible in the archaeological record.

Off-site material culture
Nothing remained of any commercial value on Ada & Clara after salvage. Apart from Donald Dennis’s junk ‘hobby’ in general (see Chapter 1) he intended to sell most of the salvaged goods, although there was no fixed timeline for sales and there were no definite customers. There was always a regular stream of people to the farm who came to see if there were items worth buying (Kallan Dennis 2007, pers. comm.).

The balustrades were one such material for which there was no known future other than to deposit them on the Dennis’ Goolwa farm. A use was found for them soon after their arrival. They are still now performing a function beyond what they were originally designed for: to reinforce a weak section of fencing to keep sheep out from the neighbouring farm (Kallan Dennis 2007, pers. comm.). Unlike the rest of the material salvaged by Donald Dennis, the balustrades, then, had an immediate re-use value. This is comparable to the ubiquitous ship tanks, salvaged from vessels in Australia.
and recycled in a variety of inventive ways, from dog kennels to eucalyptus distilleries, on land (Pearson 1992; see also Kenderdine 1994:20).

The propellers, on the other hand, provide the possibility of a different interpretation. As was seen in Chapter 4, the overall size of one propeller is greater than the other by 20 mm. This seems to suggest that either they were bought separately, after an earlier one stopped functioning, or that perhaps they came from different vessels and represented a best-fit. This would appear to indicate that the owner or operator who installed them was intent on saving money. However this can only be guessed (Delan Dennis 2007, pers.comm.). It is also unlikely they would have been used at the same time due to their different sizes.

It is equally noteworthy that aside from the propellers, none of what remains from the salvage has any real commercial worth. The two Fordson tractor engines were sold, as was anything of value (Kallan Dennis 2007, pers. comm.). The propellers, which had been stored out of sight for so long, had been forgotten about. They might be sold in the future once they have been cleaned (Delan Dennis 2007, pers. comm.). The remaining benches can not be sat on for fear of collapse, the lifejackets are rotten and the life ring holds no value to the Dennis family, hence its location under a table at the back of a farm shed.

Use of a neo-Marxism paradigm

At this point the archaeological record joins the archival and oral evidence, when interpreted from a neo-Marxist perspective, to show that it is possible to glean an understanding of the ideology of the locals involved with *Ada &
Clara (see Chapter 2). An object’s exchange value is steeped in politics in the sense of ideology and represents different interests to different people. As previously discussed, Kopytoff (1986) socialised or humanised the commodity. Different groups with different needs assign it different interpretations (Kopytoff 1986:57, 80-81). Depending on one’s subjective viewpoint the material culture has many interpretations; “the relationship of behaviour to the material world is far from passive” (Beaudry, Cook and Mrozowski 1991:150).

Thus the material culture remaining on the Dennis family farm offers a genuine ethnographic understanding of different groups in society. Each artefact had a different “biography” (Kopytoff 1986:68). The key idea here is that “meaning emerges from social action and the purpose of an artefact biography is to illuminate that process (Gosden and Marshall 1999:170). For the Dennis family there was a monetary exchange value for many of the salvaged items. However even those items that were not sold continue to have some kind of exchange value (Kopytoff 1986:76).

This can be illustrated by the potential subjective viewpoint of the archaeologist or cultural heritage manager. The sight, for example of the life ring still bearing the name Ada & Clara and its port of registration, may well stir feelings of nostalgia leading to a desire to place it in a museum for the middle classes to appreciate (see Flatman 2003:147). On the other hand, for the Dennis family, representing a different subjective belief, what remains of Ada & Clara, other than the propellers, on their farm is “musical junk” (Kallan Dennis 2007, pers. comm.) (see Chapter 1).
From yet another perspective, that of the wider ideological context, both the off and on-site material culture represent the complex dialectics between economic change brought about by the industrial revolution, two world wars and two economic depressions and the lessening influence of the traditional riverine industries of the River Murray. In other words the economic situation had changed and Ada & Clara’s owners, specific to one social group, were on the losing side of a wider struggle between keeping the status quo and adapting to a new world order.

This contrast of opinions is an important aspect of this thesis as stated in Chapter 2. The new elite, or more powerful social group, had forced a new dialectic while forging an ideology that was able to mask its exploitation. In the 1890s the owners and operators of Ada & Clara had represented the ruling elite of the regional society (see Chapters 1 and 2). They held the wealth and the power. This, for example, could also be feasibly demonstrated by the one time Lloyds A1 classification in 1915 given to Ada & Clara (see Chapter 1). Following World War I, which preceded a devastating change in the economic situation worldwide, the former elite of the Murray River region, who included the owners and operators of Ada & Clara, found that they were at odds with a new breed of consumer. Previously they had catered to the farmers. Now they were being forced to cater to passengers and tourists. The industrial infrastructure of the area had changed beyond recognition. Road and rail became the norm and tourism had begun to make the need for Ada & Clara as a cargo carrier defunct. So by the 1950s power had transferred to a different elite, the industrialists. From being in a position of influence, Ada & Clara’s owners, in this capitalist environment, had to adapt or sink. To not have done so, according
to the pervading ideology of the new elite, would have spelt the end of their livelihood.

Thus the use of the neo-Marxist paradigm makes it possible to make a plausible assumption of the most recent owners’ motivation regarding the vessel’s alterations. It is clear from both the archival and archaeological record that Ada & Clara was becoming an increasing financial burden. The owners adapted, yet were wary of investing too much in the vessel. In other words they were canny and only spent on Ada & Clara what was reasonable. On the wreck site this can be interpreted from the lack of pattern in the framing and the iron patches and possibly, the iron fastenings on the floors. The fact that the vessel was not put to use again after 1955 makes sense when viewed through the neo-Marxist lens.

From a different viewpoint, whilst the Dennis family believed they were being financially astute, they can also be viewed as unwitting pawns in a subsequent stage of the dialectic controlled by the ideology of the new elite. Eventually they were forced to concede in their fight to suppress change.

To summarise then, from the wider ideological context Ada & Clara represents an archaeological symbol of the post-war economic boom and society’s desire to forget the horrors of the previous decade. This is reflected, as discussed, in both the off-site material culture and the wreck remains. It is also mirrored in the post war industrial development with the combined shift to tourism rather than cargo transport on the River Murray.
Recommendations for future research

From the above some gaps in the understanding of *Ada & Clara* and its owners are discernible. It has been possible to link only certain parts of the archaeological and historical records. This is due in part to time and weather limitations. Further archaeological work on the wreck, to locate the keel, centre board casings and other structural assemblies would be beneficial. It might then be possible to link a greater number of owners and operators, detailed in the historical records, to the archaeological records. Secondly, use of a GIS programme, abandoned for this project, could be employed to include other local riverine wrecks. In this way a wider thematic study of the region could be developed, whilst employing a suitable theoretical paradigm.

Conclusion

This chapter has interpreted the results of the fieldwork conducted both off-site and on the archaeological remains of the vessel itself. It has attempted to match parts of the archaeological remains to the historical records. In so doing it has assessed the validity of employing a neo-Marxist paradigm to interpret the combined records in order to seek to answer the research questions set out in this thesis. Lastly it has considered the possibility of future research.
Chapter Six: Conclusion

Ada & Clara’s history is inextricably linked to the people associated with it and its economic background: it is the social manifestation of a dialectical idealism. This study has provided information about the social aspects of shipbuilding techniques in the River Murray and lakes area by employing a neo-Marxist theoretical framework on one representative vessel.

Ada & Clara had at least 10 owners and operators since its construction in 1891. The demise of River Murray shipping, and hence the eventual abandonment of *Ada & Clara*, is rooted in the Great Depression of the late 1920s and early 1930s. After some time struggling to keep the vessel in a proper condition, its owners gave up principally for financial reasons.

The neo-Marxist paradigm was a useful interpretative instrument for considering key aspects of social and archaeological history. Dialectical idealism and ideology emerged as important tools in this exercise of understanding the motives and mindsets of the different owners and operators. Equally Kopytoff’s (1986) notion of the different “biographies” of an object permitted another method to interpret the off-site material culture.

The archaeological methodology for examining *Ada & Clara* was adapted to suit the particular environment. Tough weather conditions meant that a small amount of error had to be accepted into measurements. Photographs and drawings both of off-site material culture and the wreck itself complemented the work.
The results included the dimensions of the vessel, including frames and the keelson assembly. It also gave key fastenings dimensions. They also incorporated material culture found off-site associated with Ada & Clara.

Furthermore they permitted an interpretation of the site which linked the archaeological and historical evidence with the theoretical lens discussed in Chapter 2. They showed that by utilising a neo-Marxist lens in the context of the River Murray economic and social environment, it was possible to make plausible assumptions as to the motivations and mindsets of the different owners and operators.

Ada & Clara is the social manifestation of a dialectical idealism and its history is inextricably linked to its economic and social background. The owners and operators of the vessel, and hence the vessel itself, fell victim to the changing economic conditions which this research charted from the construction to the demise of the vessel.
References

Primary Sources

Government manuscripts
South Australian State Archives (SLSA): Papers of Driscoll Cremer, Public Record Group (PRG) 309, p. 65, Arbon Collection PRG 1190/4/1

Government Record Group (GRG) 51/237, 51/236, 51/239/0/1, GRG 51/135, GRG 51/135/4, GRG 51/239/1

National Australian Archives (NAA):
Register of British Ships, Main register subsequent to Merchant Shipping Act 1854, Port Adelaide 1855-1982, A7509/3-5
D596/1941/522

Report of the Parliamentary Standing Committee on Public Works on Barrages Near Murray Mouth, 21 November, 1933

Biographical Index of South Australians (years 1836 to 1885)

South Australian Directory (SAD) years 1883 to 1901

Australian Lloyds
1864 Australian Lloyds, Rules and Regulations, Australian Lloyds, Melbourne, Australia.

Register of Australian and New Zealand Shipping
1918 Register of Australian and New Zealand Shipping 1918-1919, Marine Underwater and Salvage Association of Victoria, Melbourne, Australia.

Newspapers

The Advertiser: 21/2/1959

Murray Valley Standard: 9/12/1955, 21/1/1971

Register: 21/8/1857, 28/8/1906

The Southern Argus: years 1890 to 1925, 1/4/1912, 4/1/1937

Photographs
Godson Collection, SLSA State Library PRG 1258/1/10, PRG 1258/8, B49599

Secondary sources
Adams, Jonathan

Althusser, Louis
1977 *For Marx*. NLB, London UK.

Althusser, Louis

Andas, James Wales

Bach, John

Baker, Margaret and John and William Reschke
1977 *Coorong Pilot, Murray lakes and Coorong*. Fullers Services Pty Ltd.

Baker, Margaret and John and William Reschke
1984 *Murray River Pilot, Goolwa to Renmark*, 3rd edition. Fullers Services Pty Ltd.

Baker, Richard T

Barrett, John, C.

Beaudry, Mary, C., Cook, Lauren, L. and Mrozowski Stephen, A

Binford, Lewis R.
Bonython, C. Warren and Frith, W.J

Bullers, Rick
2006 *Quality Assured: Shipbuilding in Colonial South Australia and Tasmania*. Flinders University Maritime Archaeological Monograph Series, Flinders University, Adelaide, Australia

Burris, Val

Cederlund, Carl Olof

Chamier, George
1887 *Chamier on Australian Timber*. Excerpt of Minutes of Proceedings of the Institution of Civil Engineers, Volume 1xxxxix, Session 1886-87, part iii, London UK.

Commonwealth Scientific and Industrial Research Organisation (CSIRO)

Coroneos, Cosmos
1997 *Shipwrecks of Encounter Bay and Backstairs Passage*, pp. 11-27. South Australian Heritage Series No. 3, Department of Environment and Natural Resources, Adelaide, South Australia.

Coroneos, Cosmos
1997 *Shipwrecks of Investigator Strait and the Lower York Peninsular*. South Australian Maritime Heritage Series No. 4, Department of the Environment and Natural Resources, Adelaide, Australia.

Coroneos, Cosmos and McKinnon, Robert
1997 *Shipwrecks of Investigator Strait and the Lower York Peninsular*. South Australian Maritime Heritage Series No. 4, Department of the Environment and Natural Resources, Adelaide, Australia.

Crisman, Kevin, J.

Dallwitz, John
1989 *Red Gum, crafts of necessity*, John Dallwitz, editor. Jam Factor Workshops, St Peters, South Australia, Australia.

Davis, Peter S.

Esterhuizen, Ruth

Faull, Jim (editor)

Flatman, Joe

Gosden, C. and Marshall, Y.

Griffiths, Lynne and Jeffery, Bill
1994 *River Boat Trail, South Australia*, State Heritage Department, Department of Environment and Natural Resources, South Australia Tourism Commission.

Halsey, John, R.

Hocker, Frederick, M

Hocker, Frederick, M.

Hodder, Ian

Jeffery, Bill

Johnson, Matthew
2005 *Archaeological Theory, An Introduction*. Blackwell publishing, MA, US.

Kenderdine, Sarah

Kenderdine, Sarah

Kenderdine, Sarah

Kenderdine, Sarah

Kenderdine, Sarah
1995 *Historic Shipping on the River Murray*. State Heritage Department, Department of Heritage and Land Management, South Australia.

Kopytoff, Igor

Leone, Mark, P

Leone, Mark, P
Leone, Mark, P

Leone, Mark, P

Loney, Jack

Mackay, Norman and Eastburn, David (editors)

MacLeod, Ian Donald

Marx, Karl

McGuire, Randall, H
2002 A Marxist Archaeology. Percheron Press, New York, US.

McGuire, Randall, H

Meltzer, David J.

Mobbs, Jenny and Faull, Jim

Mudie, Ian
Murphy, Larry

Painter, Gwenda
1979 The River Trade – Wool and Steamers. Turton and Armstrong, New South Wales, Australia.

O’Reilly, Rebecca
2007 Australian Built Wooden Sailing Vessels of the South Australian Intrastate Trade. Flinders University Maritime Archaeological Monograph Series, Flinders University, Adelaide, Australia.

Painter, Gwenda

Painter, Gwenda

Parsons, Ronald
1983 Ketches of South Australia, 3rd edition. Ronald Parsons, Magill, South Australia, Australia.

Parsons, Ronald
1986 Southern Passages, a Maritime History of South Australia. Wakefield Press, South Australia, Australia.

Parsons, Ronald

Parsons, Ronald

Pearson, Michael

Phillips, Peter

Ransley, Jesse

Rees, Jean

Richards, Nathan

Shanks, Michael and Tilley, Christopher

Steffy, Richard, J
1994 Wooden shipbuilding and the interpretation of shipwrecks. Texas A&M University, US.

Trigger, Bruce
1993 Marxim in Contemporary Western Archaeology. *Advances in archaeological Method and Theory* 5:159-200.

Trigger, Bruce

Tucker, Frank

Young, W.J (editor)
Appendix 1

Table 2. Timber and space in millimetres. Starboard side showing frame angles.

<table>
<thead>
<tr>
<th>Frame number</th>
<th>Moulded</th>
<th>Sided</th>
<th>Comment (type/condition)</th>
<th>Type/angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF1</td>
<td>40</td>
<td>40</td>
<td>Fe, angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 250</td>
<td></td>
</tr>
<tr>
<td>SF2</td>
<td>60</td>
<td>60</td>
<td>Timber, decayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space nil</td>
<td></td>
</tr>
<tr>
<td>SF3</td>
<td>50</td>
<td>60</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 100</td>
<td></td>
</tr>
<tr>
<td>SF4</td>
<td>60</td>
<td>40</td>
<td>Timber, decayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 900</td>
<td></td>
</tr>
<tr>
<td>SF5</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 700</td>
<td></td>
</tr>
<tr>
<td>SF6</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 650</td>
<td></td>
</tr>
<tr>
<td>SF7</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 700</td>
<td></td>
</tr>
<tr>
<td>SF8</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 740</td>
<td></td>
</tr>
<tr>
<td>SF9</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 830</td>
<td></td>
</tr>
<tr>
<td>SF10</td>
<td>90</td>
<td>90</td>
<td>Timber, decayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 100</td>
<td></td>
</tr>
<tr>
<td>SF11</td>
<td>60</td>
<td>70</td>
<td>Timber, decayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 220</td>
<td></td>
</tr>
<tr>
<td>SF12</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 450</td>
<td></td>
</tr>
<tr>
<td>SF13</td>
<td>100</td>
<td>100</td>
<td>Timber, decayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 20</td>
<td></td>
</tr>
<tr>
<td>SF14</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 200</td>
<td></td>
</tr>
<tr>
<td>SF15</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 150</td>
<td></td>
</tr>
<tr>
<td>SF16</td>
<td>60</td>
<td>60</td>
<td>Timber, badly decayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 200</td>
<td></td>
</tr>
<tr>
<td>SF17</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 540</td>
<td></td>
</tr>
<tr>
<td>SF18</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 400</td>
<td></td>
</tr>
<tr>
<td>SF19</td>
<td>70</td>
<td>70</td>
<td>Timber, decayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 120</td>
<td></td>
</tr>
<tr>
<td>SF20</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space nil</td>
<td></td>
</tr>
<tr>
<td>SF21</td>
<td>60</td>
<td>60</td>
<td>Timber, decayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 200</td>
<td></td>
</tr>
<tr>
<td>SF22</td>
<td>60</td>
<td>60</td>
<td>Timber, decayed</td>
<td></td>
</tr>
<tr>
<td>SF</td>
<td>Width</td>
<td>Height</td>
<td>Material</td>
<td>Space</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>--------</td>
<td>---------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>23</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td>nil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>24</td>
<td>50</td>
<td>50</td>
<td>Timber, decayed</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>60</td>
<td>Timber, decayed</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>60</td>
<td>60</td>
<td>Timber, decayed</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>60</td>
<td>60</td>
<td>Timber, decayed</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>30</td>
<td>Timber, decayed</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>50</td>
<td>50</td>
<td>2 * angle iron</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>60</td>
<td>50</td>
<td>Timber, decayed</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>60</td>
<td>50</td>
<td>Timber, decayed</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>40</td>
<td>60</td>
<td>Timber, decayed</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>50</td>
<td>60</td>
<td>Timber, decayed</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>50</td>
<td>60</td>
<td>Timber, decayed</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>60</td>
<td>70</td>
<td>Fe angle iron</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2

Table 3. Timber and space in millimetres. Port side showing frame angles.

<table>
<thead>
<tr>
<th>Frame number</th>
<th>Moulded</th>
<th>Sided</th>
<th>Comment (material/condition)</th>
<th>Type/angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF1</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 280</td>
<td></td>
</tr>
<tr>
<td>PF2</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 400</td>
<td></td>
</tr>
<tr>
<td>PF3</td>
<td>60</td>
<td>80</td>
<td>Timber, decayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 400</td>
<td></td>
</tr>
<tr>
<td>PF4</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 8000</td>
<td></td>
</tr>
<tr>
<td>PF5</td>
<td>90</td>
<td>60</td>
<td>Timber, decayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 260</td>
<td></td>
</tr>
<tr>
<td>PF6</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 650</td>
<td></td>
</tr>
<tr>
<td>PF7</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 350</td>
<td></td>
</tr>
<tr>
<td>PF8</td>
<td>40</td>
<td>60</td>
<td>Timber, decayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 150</td>
<td></td>
</tr>
<tr>
<td>PF9</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 50</td>
<td></td>
</tr>
<tr>
<td>PF10</td>
<td>60</td>
<td>60</td>
<td>Timber, decayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 400</td>
<td></td>
</tr>
<tr>
<td>PF11</td>
<td>70</td>
<td>100</td>
<td>Timber, decayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 20</td>
<td></td>
</tr>
<tr>
<td>PF12</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 400</td>
<td></td>
</tr>
<tr>
<td>PF13</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 250</td>
<td></td>
</tr>
<tr>
<td>PF14</td>
<td>40</td>
<td>60</td>
<td>Timber, decayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 100</td>
<td></td>
</tr>
<tr>
<td>PF15</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 560</td>
<td></td>
</tr>
<tr>
<td>PF16</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 350</td>
<td></td>
</tr>
<tr>
<td>PF17</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 700</td>
<td></td>
</tr>
<tr>
<td>PF18</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space nil</td>
<td></td>
</tr>
<tr>
<td>PF19</td>
<td>80</td>
<td>69</td>
<td>Timber, decayed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 250</td>
<td></td>
</tr>
<tr>
<td>PF20</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 420</td>
<td></td>
</tr>
<tr>
<td>PF21</td>
<td>50</td>
<td>50</td>
<td>Fe angle iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space 230</td>
<td></td>
</tr>
</tbody>
</table>
| PF22 | 60 | 60 | Timber, decayed
Space nil |
| PF23 | 70 | 60 | Timber, decayed
Space 180 |
| PF24 | 50 | 50 | Fe angle iron
Space 250 |
| PF25 | 50 | 50 | Timber, decayed
Space nil |
| PF26 | 50 | 50 | Fe angle iron
Space 40 |
| PF27 | 50 | 50 | Fe angle iron
Space 10 |
| PF28 | 50 | 50 | Fe angle iron
Space 180 |
| PF29 | 40 | 60 | Timber, decayed
Space 550 |
| PF30 | 50 | 50 | Fe angle iron
Space nil |
| PF31 | 50 | 60 | Timber, decayed
Space 700 |
| PF32 | 50 | 50 | Fe angle iron
Space 350 |
| PF33 | 50 | 50 | Fe angle iron
Space 1400 |
| PF34 | 60 | 30 | Timber, decayed
Space 650 |
| PF35 | 60 | 40 | Timber, decayed
Space 550 |
| PF36 | 50 | 50 | Fe angle iron
Space 370 |
| PF37 | 50 | 50 | Fe angle iron
Space nil |
| PF38 | 80 | 100 | Timber, decayed
Space 450 |
| PF39 | 50 | 50 | Fe angle iron |

Appendix 3

Photograph copyright permissions
DEH

Date: 09/09/2007

State Library

To Whom It May Concern:

Re: Reproducing of map HS 830.83, GCDK River Murray

Permission is granted for Jessica Berry to be able to a copy map HS 830.83 GCDK River Murray, which is held at the State Library of South Australia.

Jessica has advised Department for Environment and Heritage that this map is going to be used for her thesis, which will be published on the Flinders University maritime archaeology department website.

For any further information on this matter, please do not hesitate to give me a call on 8463 3859 or email panico.lou@sa.gov.au

Regards

Luciano Panico
Supervisor Delivery Services
Image and Cadastral Services
Environmental Information Directorate
Department for Environment and Heritage
Level 1, 100 Pirie Street, Adelaide, 5000

Phone: +61 8 8463 3859
Fax: +61 8 8463 3900
mailto: panico.lou@sa.gov.au
22 May 2007

Ms Jessica Berry
Flat 57, 4-8 Charles Street
Adelaide SA 5000

Dear Ms. Berry,

I am replying to your request for permission to use the following items for inclusion in your Masters thesis on the vessel 'Ada & Clara' to be published by Flinders University in July/August 2008.

PERMISSION GRANTED
SLSA: PRG 1258/1/6 Ada & Clara on slip, 1909

I am pleased to grant permission to publish and waive the publication fee, subject to acknowledgement of the State Library of South Australia. The following form of acknowledgement should be used:

'Photograph courtesy of the State Library of South Australia.'

In addition, the identification number of the item must be included, e.g. SLSA: PRG 1258/1/6.

Permission is for this use only. Any further use requires a separate application.

PERMISSION NOT GRANTED
SLSA: PRG 1190/4/4 'Carry on up the Murray', 1982/1983

This image is still within copyright and the State Library cannot grant permission to use without the copyright holder's permission. If you can provide me with a copy of the copyright holder's permission, I will be happy to process your request.

If you have any further questions regarding this permission to publish application or your copy order, please let me know. My contact details are:
Tel. (08) 8207 7240; Fax (08) 8207 7247 or email McDonald.Privs.slsa.sa.gov.au

Yours sincerely,

Research Team
State Library of South Australia
GPO Box 419
Adelaide SA 5001
16 May 2007

Ms Jessica Berry
Flat 57, 4-8 Charles Street
Adelaide SA 5000

Dear Ms. Berry,

I am replying to your request for permission to use the following items for inclusion in your Masters thesis on the vessel 'Ada & Clara' to be published by Flinders University in July/August 2008.

PERMISSION GRANTED
SLSA: PRG 1258/1/7 Ada & Clara as an excursion boat laden with passengers, 1948
SLSA: PRG 1258/1/8 Ada & Clara, three-masted schooner, 1910
SLSA: PRG 1258/1/10 Ada & Clara (Captain G. H. Griffen on foredeck), 1948

I am pleased to grant permission to publish and waive the publication fee, subject to acknowledgement of the State Library of South Australia. The following form of acknowledgement should be used:

'Photograph courtesy of the State Library of South Australia.'

In addition, the identification number of the item must be included, e.g. SLSA: PRG 1258/1/7.

Permission is for this use only. Any further use requires a separate application.

If you have any further questions regarding this permission to publish application or your copy order, please let me know. My contact details are:
Tel. (08) 8207 7240; Fax (08) 8207 7247 or email McDonald.Proctor.slsa.sa.gov.au

Yours sincerely,

Research Team
State Library of South Australia
GPO Box 419
Adelaide SA 5001
14 August 2007
Jessica Berry
Flat 5, 4-8 Charles Street
Adelaide SA 5000

Dear Ms. Berry,

I am replying to your request for permission to use the following items from our collections in your Masters thesis to be published by Flinders University on their website in 2008:

Permission granted

SLSA: B 49599 River launch 'Showboat' (seating) ca. 1925
http://143.199.24.65/pmcimg/49599/B49599.jpg

I am pleased to grant permission to publish and waive the publication fee, subject to acknowledgement of the State Library of South Australia. The following form of acknowledgement should be used:

'Courtesy of the State Library of South Australia.'

In addition, the identification number of the item must be included, e.g. SLSA: B 49599.

Where the photograph is to appear on a website the words State Library of South Australia should form a link to the page holding the image in the State Library of South Australia website. I have included the relevant URL in the citation above.

Permission for website use is contingent on your using low resolution images on the website. The images on the South Australiana database are 491 x 378 pixels. Something comparable would be appropriate. If the images on the website are suitable, you may use them for this purpose.

Permission is for this use only, and any further use requires a separate application.

If you have any further questions regarding this permission to publish application, please let me know. My contact details are:
Tel. (08) 8207 7240; Fax (08) 8207 7247 or email McDonald.Pruce@slsa.sa.gov.au

Yours sincerely,

Pruce McDonald
Research Team
State Library of South Australia
GPO Box 419
Adelaide SA 5001
Phone: (08) 82077240
Fax: (08) 82077247
Email: McDonald.Pruce@slsa.sa.gov.au
http://www.slsa.sa.gov.au